Oil Spill Monitoring HANDBOOK

Australian Government Australian Maritime Safety Authority

OIL SPILL MONITORING HANDBOOK

Acknowledgments

Wardrop

This Handbook has been prepared by Wardrop Consulting (Australia) in association with the Cawthron Institute (New Zealand) at the request of the Australian Maritime Safety Authority (AMSA) and New Zealand Marine Safety Authority (MSA). A number of people and Agencies have contributed to this work and are acknowledged below (in alphabetical order).

Tracey Baxter, AMSA Trevor Gilbert, AMSA Shayne Wilde, AMSA Julian Roberts, MSA NZ John Leeder, Leeder Consulting Leigh Stevens, Cawthron Institute Julie Wall, NSW Waterways Authority John A. Wardrop, Wardrop Consulting

Figures in Guidelines S.3, S.5 and S.8 are from Wardrop, 2000.

National Library of Australia Cataloguing-in Publication Data:

AMSA. 2003. Oil Spill Monitoring Handbook. Prepared by Wardrop Consulting and the Cawthron Institute for the Australian Maritime Safety Authority (AMSA) and the Marine Safety Authority of New Zealand (MSA). Published by AMSA, Canberra.

ISBN 0 642 70992 0

Authors Note:

This document should be read in association with the Oil Spill Monitoring Background Paper (AMSA, 2003).

Cover only updated (new AMSA and Maritime NZ logos) 2006. Cover photo by Jamie Storrie, Department of the Environment and Heritage.

Copyright

This work is copyright. Apart from any fair dealing for the purpose of study, research criticism or review, as permitted under the Copyright Act this publication must not be reproduced in whole or in part without the written permission of the Copyright Holder. Unless other authorship is cited in the text or acknowledgements above, the copyright holder is the Australian Maritime Safety Authority (AMSA) and the Marine Safety Authority of New Zealand (MSA).

Enquiries should be directed to:

The Manager, Environment Protection Standards, Australian Maritime Safety Authority, GPO Box 2181, Canberra City, ACT Australia 2601.

TABLE OF CONTENTS

Title Acki Nati Auth Cop Tabl Rap	Page nowledgements onal Library of Australia Cataloguing-in Publication data nors Note yright le of Contents id Reference for Spill Response Monitoring Requirements	i ii ii ii iii vii
1.0 1.1 1.2 1.3	INTRODUCTION The Purpose of this Handbook Types of Monitoring Using this Handbook	1 1 1 4
2.0	MONITORING PROGRAMME DESIGN AND EXECUTION	7
2.1	Designing the Programme	7
2.2	Setting Objectives: Defining the Question	7
2.3	Identifying Information Needs	10
2.4	Programme Design	11
	2.4.1 Scale of the Programme	11
	2.4.2 Field Assessment vs Field Sampling	11
	2.4.5 Quality of Data 2.4.4 Design Constraints	14
2.5	Training Requirements	14
2.6	Resources	14
2.7	Field Deployment	15
2.8	Determining the End of the Programme	15
3.0	MONITORING THE MARINE ENVIRONMENT	17
3.1	Physical Environment	17
3.2	Oil at Sea	17
	3.2.1 Monitoring the Oil Slick	19
33	S.2.2 Monitoring the Oli Marine Environmental Effects	19
0.0	3.3.1 Habitats	36
	3.3.2 Target Fauna and Flora	37
	3.3.3 Parameters	38

 4.0 4.1 4.2 4.3 4.4 	MONITORING THE SHORELINE ENVIRONMENT Organisation of Shoreline Monitoring Physical Environment 4.2.1 Substrate Type 4.2.2 Shoreline Form 4.2.3 Shoreline Energy Oil on Shorelines 4.3.1 Aerial Surveys 4.3.2 Ground Surveys 4.3.3 Field Detection of Petroleum Hydrocarbons 4.3.4 Sediment Sampling Methods Environmental Effects 4.4.1 Habitats 4.4.2 Target Fauna and Flora 4.4.3 Parameters	45 48 48 49 54 57 57 63 69 69 69
5.0 5.1 5.2 5.3 5.4 5.5	GENERAL METHODS Field Sampling Methods 5.1.1 Selecting the Sampling Location 5.1.2 Use of Quadrats and Transects Sample Handling Photo-documentation 5.3.1 Using Photographs and Photo-quadrats 5.3.2 Photo-transects and Video-transects Laboratory Methods 1: Chemical Analysis Laboratory Methods 2: Toxicological Tests	77 77 78 78 79 80 80 85 85
6.0 6.1 6.2 6.3 6.4 6.5	SAFE FIELD OPERATIONS Identifying Site Hazards Personnel Tracking Identifying Chemical Hazards Monitoring Air Quality: Volatiles Communications	87 90 90 90 90
7.0 7.1 7.2 7.3	DATA CONTROL AND MANAGEMENT Data Transfer and Storage Security and Data Control Data Quality	93 93 93 94
8.0	FURTHER READING AND INFORMATION	97

APPENDIX A: GLOSSARY9APPENDIX B: CONVERSION TABLES1010					
LIST OF TA	BLES				
Table 1.1	Classification of Spill Monitoring According to	2			
	Primary Objectives	0			
Table 1.2	the Incident	3			
Table 1.3	Examples of Type I and Type II Monitoring During a	6			
	Spill Response				
Table 2.1	Setting Objectives: Example Scenario	10			
Table 2.2	Design Constraints	13			
Table 2.3	Possible Monitoring Termination Criteria	16			
Table 7.1	Possible Monitoring and Sampling Errors	94			
LIST OF FIG	GURES				
Figure 1.1	Stages in the Planning and Execution of a	4			
	Monitoring Programme				
Figure 3.1	Manual Calculation of Surface Slick Trajectory	19			
Figure 4.1	Shoreline Segments	46			
Figure 4.2	General Indicators of Shoreline Energy	49			
Figure 4.3	Subsurface Oil	57			
Figure 4.4	Determining Sediment Sampling Method	63			
Figure 4.5	Mangroves Showing Brown (Dead) Leaves	76			
Figure 4.6	Oiled Mangroves	76			
Figure 5.1	Selected Quadrats	77			
Figure 5.2	Random Quadrats	77			
Figure 5.3	Counting Intertidal Epifauna within a Quadrat	78			
Figure 5.4	Transects	79			
Figure 5.5	Frame for Photo-documentation of Quadrats	80			
Figure 6.1	Environmental Hazards	92			

LIST OF GUIDELINES

D.1	Designing a Monitoring Programme	8
M.1	Estimating Sea State	18
M.2	Locating Oil Slicks at Sea	21
M.3	Characterising Oil Slicks at Sea	22
M.4	Video/Photo Surveying of Slicks at Sea	24
M.5	Visual Monitoring of Dispersant Operations	25
M.6	Sampling Surface Oil Slicks and Films	27
M.7	Sampling of Subsurface Water	29
M.8	Field Measurement of Oil in Water	31
M.9	Sampling of Seabed Sediments	33
M.10	Monitoring Damage to Commercial or Recreational Species	40
M.11	Monitoring Damage to Marine Megafauna	41
M.12	Monitoring Damage to Marine Flora	42
M.13	Monitoring Damage to Plankton	43
M.14	Sampling of Organisms for Taint Testing	44
S.1	Determining Sectors and Segments	47
S.2	Characterising Shoreline Substrate	50
S.3	Determining Beach Profile (Gradient)	51
S.4	Aerial Survey of Shorelines	55
S.5	Assessment of Oiled Shorelines: Surface Oil	58
S.6	Assessment of Oiled Shorelines: Subsurface Oil	60
S.7	Field Detection of Petroleum Hydrocarbons	62
S.8	Obtaining Sediment Samples	64
S.9	Calculating the Mass of Oil in Shorelines	68
S.10	Monitoring Damage to Invertebrate Beach Fauna	70
S.11	Monitoring Damage to Coastal Marine Mammals	71
S.12	Monitoring Damage to Coastal Birds	72
S.13	Monitoring Damage to Marine Reptiles	73
S.14	Monitoring Damage to Coastal Flora	74
G.1	Handling of Samples	81
G.2	Decontamination of Equipment	84
G.3	Chemical Analysis of Samples	86
HS.1	Identification of Site Hazards	88
HS.2	Deployment into Remote Areas	91
Q.1	Data Management	95

THIS PAGE AND NEXT TO BE REPLACED WITH RAPID RESPONSE TABLE (A4 FOLD-OUT) THIS PAGE AND PREVIOUS TO BE REPLACED WITH RAPID RESPONSE TABLE (A4 FOLD-OUT)

1.0 INTRODUCTION

1.1 The Purpose of this Handbook

This Handbook provides guidelines for undertaking monitoring for actual or potential marine spill responses. It focuses on oil spill monitoring; however the guidelines presented are also generally applicable for monitoring marine chemical spills. It is designed for use by personnel who are familiar with the field information needed during a spill response. A scientific background, whilst an advantage, is not required.

The Handbook provides guidelines on the scope, scale and design of monitoring methods that relate primarily to monitoring undertaken to directly assist in the planning or execution of a spill response, and which is likely to be considered "reasonable" and "appropriate" by insurers and National agencies i.e. "Type I" monitoring, (see Section 1.2).

"Type II" monitoring e.g. scientific investigation, pre-spill (baseline) monitoring, post spill monitoring, or the assessment of environmental or economic damages, is not specifically addressed by the Handbook, although many of the guidelines are also relevant for "Type II" studies.

As such, this Handbook should be seen as a Guideline document, and not a set of rules that must be rigidly adhered to. Designers of both Type I and Type II programmes must consider the particular characteristics of the spill together with the specific objectives of their study and ensure the consequent design, methods, sampling size and other components of the programme meet their specific monitoring needs.

1.2 Types of Monitoring

Classifying monitoring according to its underlying purpose helps define the likely methodologies to be used and to determine whether the monitoring is likely to be considered a legitimate spill response cost. A two-class monitoring nomenclature has been developed in Australia and New Zealand. The two classes are defined according to the Primary Objectives of the monitoring programme:

• <u>Type I Monitoring</u>: which provides information of direct relevance to spill response operations, i.e. information needed to plan or execute response or cleanup strategies.

 <u>Type II Monitoring</u>: which relates to non-response objectives, and includes short term environmental damage assessments, longer term damage assessments (including recovery), purely scientific studies, and all post spill monitoring activities.

The monitoring objectives, and hence "Type" are important when considering the scale and design of the study (see Table 1.1).

Monit	oring Classification	Character or			
Туре	Definition	Criteria			
Type I	Monitoring with the	Results generally required quickly.			
	Primary Objective of	Lower requirement for statistical strength (e.g.			
	providing information of	smaller requirement for replicates at sampling			
	use in the planning or	locations and lower number of locations).			
	execution of a current	Lower requirement for identification of control			
	spill response operation.	sites or to demonstrate baseline conditions.			
		Concentration on key habitats or species that			
		are indicators of biological community health,			
		are of particular "value", or have slow recovery			
		times.			
		Includes monitoring required before response			
		activities will be approved by regulatory			
		agencies e.g. use of chemical agents, such as			
		dispersants, or bioremediation agents.			
		Includes monitoring to help predict			
		environmental effects of define the sensitivity			
Tune II	Manitaring with a	of resources to guide spill response actions.			
туре п	Rimary Objective other	may be longer-term studies and monitoring			
	than providing	the cleanup response			
	information of use in the	Need for high statistical strength (e.g.			
	planning or execution of	notentially large number of samples or sample			
	a current spill response	sites)			
	operation.	Need for high quality "control" areas			
		Monitoring may extend beyond the time period			
		in which costs can be recovered from the			
		spiller.			

Table 1.1 Classification of Spill MonitoringAccording to Primary Objectives

Monitoring can be undertaken at a number of stages before, during or after a spill and associated response. Describing monitoring programmes according to timing assists in identifying objectives, as well as constraints in scope and design. These are defined in Table 1.2.

Currently, only Type I oil spill monitoring costs are reimbursed by AMSA and the MSA under the respective Australian and New Zealand national marine pollution arrangements. Coverage, in these cases, is specifically confined to relevant monitoring undertaken as part of the response and which is "reasonable" and "appropriate" in its scope, design and subsequent costs.

Response	Description of
Stage	Monitoring
Stage 1	This includes true baseline monitoring and may be long term and
Pre Spill	large scale. "Control" sites can be well established. Study design
	can be modified and refined over time. Generally, such
	monitoring is undertaken in areas of high risk or on resources that
	are sensitive to spills or are of protection or conservation priority.
Stage 2	Monitoring done at this stage is reactive and must often be
Post Spill –	designed and implemented at short notice to collect a "snapshot"
Pre Impact	of pre-impact conditions. Establishment of reliable "control" sites
	is difficult.
Stage 3	Monitoring of oil-impacted shorelines, waters or resources.
Post Impact –	Examples include monitoring of oil behaviour and persistence in
Pre Cleanup	uncleaned shorelines or monitoring of immediate damage due to
	oil (not cleanup).
Stage 4	Monitoring that occurs through a cleanup activity. For example,
Cleanup	monitoring the success or the effect of cleanup on shorelines,
	water quality or biological resources.
Stage 5	Monitoring of resources, water or shorelines after cleanup
Post Cleanup -	activities have ceased but before the response has been
Pre Response	terminated. These are usually short-term programmes. This
Termination	would include final assessments of cleaned shorelines, perhaps
	as an agreed precondition to terminating a response.
Stage 6	This includes all monitoring that occurs after the formal end of a
Post Response	response. Such studies may be short, medium or long-term.

Table 1.2 Description of MonitoringAccording to the Stage of the Incident

Stage	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5	Stage 6	
Response	Pre Spill		Res	sponse	Post		
_	_		(Post Spill)				
Impact	Pre Ir	npact	ipact Post Imp				
Cleanup	Pre Spill	Pre C	leanup	Cleanup	Post	Cleanup	
	Sj	oill Imp	bact Sta	rt of End	of End	d of	
			Clea	anup Clea	nup Resp	onse	

Type II monitoring costs are not currently reimbursed but in some cases may be recoverable from the spiller's insurer (e.g. a vessel's Protection and Indemnity (P&I) Club), for example if damage assessment is required for prosecutions.

In determining what is likely to be "reasonable", consider the following:

- Are results of significant value in the design, execution or assessment of response actions?
- Is the scope of the programme, and speed of obtaining results, the minimum necessary to fulfil the stated objectives?
- Does the level of accuracy reflect the operational needs of the objective?

1.3 Using this Handbook

This Handbook provides guidance for identifying the need for Type I monitoring programmes and for the design and execution of these. It does not, and cannot, provide ready-made monitoring programmes for all spill response needs.

The development and execution of each monitoring programme must pass through a number of stages or tasks (Figure 1.1).

The first of these involves determining what we hope to achieve through monitoring, i.e. setting objectives. The type of information (data) that should be collected is largely determined by the objectives. Guidelines for these tasks and for the design planning and execution of monitoring programmes are discussed in Section 2.

Figure 1.1 Stages in the Planning and Execution of a Monitoring Programme

Objective and habitat-specific Guidelines for programme execution are provided in Sections 3, 4 and 5. In using these Sections of the Handbook it must be remembered that they are Guidelines only. They are not a substitute for experience and training.

It should be remembered that this Handbook is focused on obtaining timely information that is of value to the planning and execution of a <u>spill</u> <u>response</u> (i.e. Type I monitoring). While this requires the collection of the highest quality data possible, it does not require the statistical rigor of scientific investigation and research.

Examples of Type I and Type II monitoring are provided in Table 1.3

Guidelines for safe field operations are provided in Section 6. Monitoring personnel should not lose sight of the fact that they may be operating in isolated areas with poor communications and, possibly, significant safety hazards, such as extremes of climate and dangerous wildlife.

Section 7 deals with data management and quality control. It is important that information is effectively stored and also transmitted to the response personnel who need it, within an appropriate timeframe. In transmitting information it is important to remember the purpose for which the data were collected. Often planning and operations personnel will need an <u>assessment</u> based on the data, rather than the data itself.

Data obtained for a specific objective may also be of value for other needs, identified later in the response, for example post spill studies or other "Type II" monitoring programmes. Data should be managed in a way that allows full use to be made of the information collected.

It is also important to remember that the recipient may be unfamiliar with scientific terminology and so the use of jargon should be avoided. A short glossary is provided in Appendix A to help bridge the various language gaps that can occur within an Incident Management Team.

Finally, a list of additional reference information that may assist in the specific design of monitoring programmes is included in Section 8.

 Table 1.3 Examples of Type I and Type II Monitoring During a Spill Response

Activity	Туре І	Type II
Spill surveillance	Surveillance to locate oil in order to plan or direct	Surveillance to locate the source of a spill, for
	response activities.	prosecution purposes.
Oil or chemical source	Investigations aimed at identifying the spill source for	Investigations to identify the source for the
identification	spill prevention or containment, in order to identify the	purpose of prosecution.
	spilt material (so as to better predict behaviour), or to	
	plan the response.	
Determination of oil	Physical and/or chemical analysis undertaken in order	Physical and/or chemical analysis undertaken
character	to assess efficiency of response or to predict oil	only in order to assess potential environmental
	behaviour (weathering) or effects.	or economic damages.
Identification of	Surveillance or ground surveys to assist in	Studies related to damage or damage
sensitive areas or	development of response priorities.	assessments where the data is to be used for
resources	Studies that quantify potential damages to assist in the	prosecution or damages claims.
	formulation of response priorities.	
Assessment of water	Monitoring undertaken to determine the efficiency of, or	Monitoring aimed at determining actual or
quality	potential adverse effects from, dispersant operations,	potential damage or damages, where data is to
Water column	shoreline washing or other response operation.	be used for prosecution, damages claims or for
organisms		scientific study only.
Effects on fisheries	Monitoring undertaken to better manage fisheries,	Monitoring undertaken to quantify the effects of
	public or media concerns relating to potential effects of	the spill or response activities for prosecution,
	the spill or response activities e.g. tainting or fish kills.	damages assessments or scientific study.
Shoreline assessment	Monitoring undertaken to better design shoreline	Studies to determine the behaviour and effects
Sediment quality: Oil on	cleanup methods, formulate priorities or to measure	of residual oil for scientific purposes, particularly
or in sediment)	the effectiveness of cleanup.	longer term studies.
Effects on marine/	Monitoring undertaken to determine the adverse	Monitoring undertaken to quantify the effects of
coastal megafauna	effects from response operations (e.g. aerial	the spill or response activities for prosecution,
	surveillance) or to plan for wildlife response activities.	damages assessments or scientific purposes.
Effects on other	Monitoring undertaken to determine the adverse	Monitoring undertaken to quantify the effects of
intertidal/ subtidal fauna	effects from cleanup e.g. dispersant operations,	the spill or response activities for prosecution,
and flora	shoreline washing or mechanical cleanup.	damages assessments or scientific purposes.

2.0 MONITORING PROGRAMME DESIGN AND EXECUTION

2.1 Designing the programme

A wide range of different variables must be considered when designing a monitoring programme. These are summarised in Guideline D.1 and discussed in the following sections.

2.2 Setting Objectives: Defining the Question

Objectives are essentially a statement of why a monitoring programme is being undertaken. These are usually dictated by the Planning or Operations Sections of the Incident Management Team (IMT), i.e. those requesting the monitoring.

Objectives should be specific, precise, measurable, result-oriented, realistic, attainable, meaningful, concise, clear, and understandable. Good objectives will largely determine the specific monitoring methods required, and will ensure programmes are no more complicated than necessary. Note that objectives do not usually specify details such as sample numbers or sampling frequency.

When setting objectives it is important to understand how monitoring information will be used in the decision making process. If the available resources are insufficient to meet the set objectives of the monitoring programme, the programme is not worth undertaking.

While the information needed to address a primary monitoring objective may seem obvious and easily obtainable, simply stated objectives can often involve a quite complicated scope of work (see the example in Table 2.1). Where objectives are not simple, adequate time must be allocated so that Monitoring personnel and Planning or Operations personnel can identify precisely what the programme is trying to achieve.

This is particularly important where secondary objectives may need to be included in a monitoring programme to address aspects such as net environmental benefit, effectiveness versus efficiency, rates of recovery, and overall cost e.g. cleanup as well as waste disposal costs.

GUIDELINE FOR DESIGNING A MONITORING PROGRAMME

Page 1 of 2

D.1

D.1

Page 2 of 2

D.1

Table 2.1 Setting Objectives: Example Scenario

Several segments of four oiled beaches are currently being cleaned using four different methods. The Shoreline Coordinator would like to compare the effectiveness of the various cleanup methods with a view to selecting the most						
Prin	nary Objective					
1	Determine the relative effective	eness of the four different cleanup methods.				
Initi	ally Identified Information Ne	eds				
1	Amount of oil on each beach.					
2	Amount of oil removed each o	day/amount of oil remaining.				
3	Time taken to reach a satisfac	ctory level of cleanup.				
Furt	her Considerations					
	Consideration	Additional Information Needs				
1	Are beaches really	Oil distribution (tidal zone, depth, thickness).				
2	comparable?	Beach character (grain size, gradient etc).				
3	Is "most effective"	Waste generated by each method.				
4	necessarily the "most Labour and equipment costs.					
5	efficient"? Time taken to reach an acceptable level of cleanup.					
6	Is "most effective" the most Biological damage resulting from cleanup.					
7	"environmentally suitable"? Adverse effects from waste and other "off site" effects.					
8	Are <u>any</u> cleanup methods warranted?	Rate of natural oil removal in uncleaned "Control" beaches.				
9	Is there a Net Environmental	All of the above.				
10	Benefit of cleaning vs not cleaning? Level of biological or other damage from oil on "Control" beaches.					
11	Rate of biological or physical recovery of cleaned vs uncleaned beaches.					
Req	Requirements for Programme Design					
The "further considerations" must be assessed as potential "secondary objectives" for the study and, if determined to be of value to the cleanup operations, written into the study design. Careful consideration must be given to the scope of the damage assessment components (line 10 and 11) as these can easily develop into "Type II" studies. Indeed, information regarding biological and physical recovery (line 11) is unlikely to be available within the time frame of the response and so is unlikely to qualify as a "Type I" monitoring component.						

2.3 Identifying Information Needs

The aim of all monitoring programmes is to gather relevant, reliable and defensible information.

Having decided on the information requirements of a programme, it must be determined what is the most effective way of collecting data within the limitations imposed by prevailing spill conditions.

2.4 Programme Design

Although the unique circumstances of a spill will, to some degree, determine the best way to collect meaningful information in a cost effective manner, the following aspect should be considered:

2.4.1 Scale of the Programme

Monitoring should always reflect the scale of the spill or the potential effects of the spill, and the degree of accuracy needed to address the defined objective of the monitoring.

The design must also reflect the availability of human resources, logistics and what is "reasonable" for a Type I programme.

2.4.2 Field Assessment vs Field Sampling

Consideration should also be given to designs that allow data to be quickly and inexpensively collected in the field and analysed later, e.g.

- Oil, sediment or other samples.
- Video surveys.
- Photo "quadrats".
- Water and sediment samples.

Other data is best collected, or can only be collected, and assessed in the field:

- Shoreline oiling (visible).
- Shoreline gradient.
- Oil physical properties.
- Biological damage.

Guidelines provided in Sections 3 to 5 provide instructions and checklists for Type I field sampling and assessment.

2.4.3 Quality of Data

Type I monitoring has a lower requirement for data quality than Type II monitoring (Table 1.1). This does <u>not</u> mean that Type I monitoring data can be non-verifiable or unreliable, but that it does not always require the "statistical strength" of scientific research.

It is not possible to define a minimum standard for Type I monitoring; each spill presents a unique suite of constraints (Table 2.2). However, wherever and whenever practical, Type I monitoring programmes should be designed using scientific principles such as:

Control Sites

A Control Site is an "unimpacted" site used for comparison with an impacted site. For example, if a programme is looking at the effectiveness of various shore cleaning methods, cleaned sites should be compared with similarly oiled sites that have received no cleaning. In this way, all methods can be compared with natural oil removal. In practice, Control Sites may be difficult to locate or preserve. In the example used here, it may be difficult to convince spill responders, or regulatory agencies, of the value of leaving a beach uncleaned for comparative purposes.

In other cases there simply may be no Control Sites available.

Replicate Samples or Sites

Single observations and single samples are rarely adequate for drawing conclusions.

Replicate samples should be taken, and replicate assessment sites or locations must be established, wherever possible. The number required will depend on the nature of the programme and the sensitivity of the issue being assessed. This sensitivity will reflect both environmental importance, as well as social, economic and political considerations.

Personnel responsible for the planning and execution of programmes must have input into these discussions so that an adequate and feasible programme is implemented. In some cases, the scale of the monitoring programme will need to be determined at the highest level of the incident management team.

				Possil	ole De	sign I	Modifi	catior	ns (se	e Key)	
Constraint	Significance	1	2	3	4	5	6	7	8	9	10	11
Access to site	Working time window is limited	Х	X	X	X		Х	X				Х
	No or limited access			X				X	X	X		
Sample quality	Inadequate sample preservation		X		X	X	X					
	Inadequate sample tracking	Х				X					X	X
	Cross contamination					X				X		
Access/time to	Sample integrity is compromised						X					
laboratory	Delay in obtaining results						X					
Human	Limited trained personnel available		X	X	X	X						
resources	Limited personnel available	Х	X	X		X						X
Safety	Site/oil is unsafe			X						X		
	Land access is unsafe			X				X	X	X		
Sensitive	Wildlife		X	X						X	X	
resource on site	Cultural site										X	
Data processing	Results are needed urgently	Х			X			X	X		X	X
	Results are not understood		X		X						X	

Table 2.2 Design Constraints

(1) 'X' Denotes possible design modifications required due to the listed constraint. These are guidelines only. Sometimes the level of constraint will prohibit the design of the study to such an extent that objectives cannot be met. In these cases, it may not be possible to undertake that part of the monitoring programme.

(2) Key 1 Fewer replicate sites or samples.

- 2 Photo or video data collection.
- 3 Remote sensing.
- 4 Measurement of simpler parameters.
- 5 Field training and data calibration.
- 6 Field analysis or testing.

- 7 Aerial deployment.
- 8 Sea deployment.
- 9 Implement safety/site control procedures.
- 10 Obtain specialist advice
- 11 More staff/resources.

Avoidance of Cross Contamination of Samples

It is easy for field instruments to become contaminated when collecting samples. Monitoring personnel can also inadvertently contaminate samples when moving between sampling sites. Wherever possible, sampling personnel must employ procedures to avoid sample cross contamination.

This can be achieved by using clean instruments for each sample, or by employing field decontamination procedures where sampling equipment and personnel are cleaned between sites. Decontamination procedures will need to consider the practical constraints of the spill, and must recognise that personnel may deploy to a site before decontamination facilities are established in the field.

2.4.4 Design Constraints

Invariably the design of Type I monitoring programmes will need to be modified according to the prevailing conditions and constraints imposed by a spill.

Constraints may be so severe that they compromise the integrity of some components of a programme to such a degree that their worth may become questionable. If this occurs, and alternative strategies are not available, the components should be discontinued. Poor data may be worse than no data. Table 2.2 lists some of the potential constraints to monitoring programme design.

2.5 Training Requirements

Most Type I procedures, and the Guidelines provided in this Handbook, can be undertaken by personnel with adequate field instruction. Often, monitoring teams will need to comprise personnel with a range of skills, including local knowledge. Some procedures, such as biological assessments require higher levels of training. Where special training is required, this is indicated in the relevant Guideline.

2.6 Resources

As a field deployment, monitoring activities will generally be undertaken in close cooperation with the Operations Section of an Incident Management Team.

Some resources, such as vehicles, helicopters communications equipment, as well as human resources may be in short supply, particularly in the early stages of a response.

It is important that monitoring teams do not have to <u>compete</u> for these resources, but are allocated their share in a planned way, based on response priorities and safety needs. Human resources for field monitoring teams and monitoring support roles need both sufficient numbers of personnel, and an appropriate mix of skills.

Planning, Operations and Incident Control personnel should be immediately involved if a programme is compromised through lack of resources.

2.7 Field Deployment

Monitoring personnel may be the first response personnel to visit impacted sites and so must follow strict field deployment procedures. Guidelines for this are provided in Section 6.

2.8 Determining the End of the Programme

A key aspect of monitoring is determining when response activities should no longer be continued. This may be because the cleanup activities are no longer effective, are having greater deleterious effect than the oil, or the benefit of the cleanup is insufficient to justify its cost, e.g:

- Oil weathering to the extent that chemical dispersants are no longer effective.
- Shoreline cleanup causing oil to be entrained in sediment.
- Mechanical recovery of small volumes of oil.

Monitoring programmes should establish clear end points and termination criteria early in the response, acknowledging that different environmental values will have different criteria. Examples of termination criteria are presented in the following table.

Table 2.3 Possible Monitoring Termination Criteria
--

Environmental/ Resource Value	Definition of Clean
Food organisms (e.g. fish, shellfish, seaweed) and water that may be extracted for human consumption	 Must meet statutory specification for residues and taints in food products. Has no significant adverse taste or smell attributable to the spill.
Surfaces (as used by birds, mammals, and reptiles)	 No visible slicks or sheens that could adhere to feathers, fur or skin. Compliance with ANZECC Water Quality Guidelines for the Protection of Aquatic Ecosystems.
Subsurface water (as habitat for fish, corals, seagrass, aquaculture species, etc.	 Oil concentrations must not exceed normal background concentrations, or Compliance with ANZECC Water Quality Guidelines for the Protection of Aquatic Ecosystems, or Must not be toxic to key species.
Amenity of beaches and structures (e.g. jetties and slipways). Includes concepts of historic and cultural value	 No visible oil. No oil that rubs off on people or boats. Compliance with ANZECC Water Quality Guidelines for Recreational Water Quality.
Shoreline / Sediment (as habitat for algae, mangroves, molluscs, crustaceans, etc)	 Need not be visibly clean but remaining residues must not inhibit recovery through toxic or smothering effects. Complies with ANZECC Water Quality Guidelines for the Protection of Aquatic Ecosystems.
Shoreline (as an ecosystem interacting with other aquatic nearshore ecosystems)	 Remaining residues must not be mobile such that they will leach out into nearshore waters.

3.0 MONITORING THE MARINE ENVIRONMENT

Marine spills usually require a rapid response with immediate mitigation actions often based on expected oil type, predicted trajectories and oil behaviour. There is a need for rapid acquisition of field data to confirm or revise this information, and to allow refinement of response plans and activities.

Marine monitoring activities should be focussed on:

- The physical conditions prevailing at sea, primarily sea states.
- The location, movement and behaviour of the oil slick.
- Changes in the characteristics of the oil.
- Effects of the oil or response activities on the marine environment, particularly biological components (fauna and flora) but also on commercial or recreational components.

3.1 Physical Environment

Sea states and weather conditions can be major constraints on the effectiveness of marine response methods. Wave height, winds and currents can limit the deployment and effectiveness of booms and skimmers, while sea conditions affect the weathering of the oil at sea.

Although predictions of weather and sea state are generally accurate, routine monitoring of conditions is important in planning marine response. Guideline M.1 provides information for field estimation of wind velocities and sea conditions and is designed for use from aircraft, vessels or from the shore.

3.2 Oil at Sea

Monitoring of oil at sea includes monitoring of both location and behaviour of the oil slick and the character of the oil itself. Observations of slick behaviour, and/or changes in the physical or chemical character of the oil due to weathering, need to be formally recorded and logged. Accurate identification of resources impacted, and assessments of environmental damage or potential damage, are difficult without these data.

GUIDELINE FOR ESTIMATING SEA STATE

Rationale

Sea state influences the likely efficiency of marine operations such as containment and recovery and dispersant application, and must also be considered in assessing safety. While forecasts are generally accurate, field monitoring is recommended.

Meth	odo	loav
moun	U uu	vyj

1	Observe sea from land, air or vessel and relate to sea state classifications in the
	Table below.

Check against available wind data and forecasts. Note: wind data may be 2 regional and not necessarily accurate.

Beaufort	W	ind	Description		Wave	
Scale	Spee	d (Kn)			Heig	ht (m)
	Mean	Range	Wind	Sea	Mean	Max.
0	0.5	0-1	Calm	Flat.	-	-
1	2	1-3	Light air	Ripples.	0.1	0.1
2	5	4-6	Light breeze	Small wavelets. No breakers.	0.2	0.3
3	9	7-10	Gentle breeze	Large wavelets. Some crests & scattered white caps.	0.6	1.0
4	13	11-16	Moderate breeze	Small waves. Fairly frequent white caps.	1.0	1.5
5	19	17-21	Fresh breeze	Moderate waves. Many white caps. Occasional spray.		2.5
6	24	22-27	Strong breeze	Strong Large waves. Extensive white 3.0 preeze foam crests. Some spray.		4.0
7	30	28-33	Near gale	Sea rises. White foam from breaking waves in streaks.	4.0	5.5
8	37	34-40	Gale	Moderate, long waves. White foam blown in long streaks.	5.5	7.5
9	44	41-47	Strong gale	High waves. Dense streaks of foam. Wave crests begin to topple.	7.0	10.0
10	52	48-55	Storm	Very high waves. Long hanging crests. Foam in large patches. Sea surface largely white.	9.0 12.5	
11	60	56-63	Violent storm	Extreme waves (small-medium ships lost to view). Foam covered sea surface. Reduced visibility.		
12	-	>64	64 Hurricane Air filled with foam and spray. Driving spray. Very reduced visibility.		>14	-
			Pa	age 1 of 1		M.1

M.1

3.2.1 Monitoring the Oil Slick

Oil slicks at sea are routinely monitored by aerial surveillance. This includes monitoring of both the position and the character of the slick. Observations of slick character include area covered, percentage cover and gross changes to oil character (e.g. emulsification). Guidelines for this are provided in Guidelines M.2, M.3, and S.4, and also in a number of Field Guides (Section 8).

In some oil spill situations, trajectory can be calculated manually from wind, current and oil data (see Figure 3.1), or by using computer-based oil spill trajectory models (OSTMs). For chemical spills, where the contaminant may not be visible, a variety of different field methods are available to facilitate visual tracking, e.g. the use of tracker buoys (drogues) and dyes. Three-dimensional spill models are also available.

Figure 3.1 Manual Calculation of Surface Slick Trajectory

3.2.2 Monitoring the Oil

Oil samples can indicate which equipment or cleanup methods are likely to be most effective. Time constraints often necessitate field assessment based on observations of the slick behaviour, rather than on a detailed laboratory analysis of the oil itself (see Guidelines M.3 and G.3). Although detailed laboratory analysis is often too slow to provide data of operational (Type I) use, it can provide information relating to the potential persistence of oil and the likely recovery of oil impacted communities. This can be related back to decision making regarding the <u>need</u> for cleanup efforts.

Oil in the Water Column

The amount or character of oil suspended or dissolved in the water column may be required for oil mass balance calculations or for determining the extent of weathering. While this information may be required for planning the response (i.e. Type I monitoring), it is more likely to be required for identification of the spill source or for estimation of potential environmental damage assessments (i.e. Type II monitoring).

The use of chemical dispersants will require a net environmental benefit analysis, which may need verification after the trialing of dispersant or after the initial application of dispersant. This may require measuring oil incorporated into the water column or underlying sediments (see Guideline M.5).

Consequently, Guidelines for water column sampling are provided in Guidelines M.4, M.6 and M.7 and for marine sediments in Guideline M.8.

Oil in Marine Sediments

Oil is only rarely incorporated into seabed sediments as a result of the weathering of surface slicks. However, oil can be incorporated into marine sediments as a result of the natural redistribution of oiled pebbles, sands, and silts due to wave or following remobilisation by shoreline cleanup activities, particularly washing methods.

Monitoring of both natural and cleanup induced sand redistribution may be necessary to better determine the net environmental benefit of natural cleaning or intervention.

GUIDELINE FOR LOCATING OIL SLICKS AT SEA

Rationale

Monitoring of slick position is needed to verify and recalibrate computer oil spill trajectory models (OSTM's). The accuracy of OSTM results is often compromised by inaccurate data or lack of local wind and current data.

Met	hodology			
1	Select and commission aircraft. Aircraft should have:			
	1.1 Good downward visibility (e.g. fixed wing aircraft with an over-fuselage			
	wing, or helicopters).			
	1.2 Radios that allow direct communications with vessels or ground			
	personnel, if used in support of marine response or ground surveys.			
	1.3 Global (Geographic) Positioning System (GPS).			
2	Assemble equipment required:			
	2.1 Map or chart, suitable for marking up (preferably laminated).			
	2.2 Pens, pencils and eraser.			
	2.3 Camera (digital or video camera preferred).			
	2.4 Aerial Observation Report forms.			
	2.5 Reliable watch (the aircraft will have a clock).			
	2.6 Sunglasses.			
3	Obtain information on the predicted location of the slick (e.g. OSTM output).			
4	Discuss flight and surveillance programme with the Pilot.			
5	Report departure time flight path and ETA to air control.			
6	Proceed to predicted position.			
7	Conduct a "ladder" search until slick is located (see Figure M.2.1).			
8	Continue search over area to detect other slicks.			
9	Record slick locations on map			
	or GPS coordinates.			
10	If required, record slick			
	characteristics as per			
	Guideline M.3.			
11	Upon return, report safe arrival			
	and time to air control.			
12	Lodge GPS position data			
	and/or copy of map with			
	Operations Coordinator and			
	document control.			
	Figure M.2.1			
	Page 1 of 1 M.2			

GUIDELINE FOR CHARACTERISING OIL SLICKS AT SEA

Rationale

Monitoring of slick character is needed for planning marine response strategies. Slick area indicates the scale of the response needed.

Percentage cover and slick thickness indicate likely efficiency of containment or dispersant methods and may also indicate the likely persistence of the slick.

Me	thodo	blogy			
1	Locat	e slick as per Guideline M.2.			
	Note:	Preferred altitude is 300-500m (1000-1500 feet) for marine surveillance.			
	Aircra	aft should orientate the observer to about a 30 degree angle.			
2	Deter	mine the <u>area</u> of the slick.			
	2.1	Fly the length of the slick and record the time taken and the aircraft speed			
		(note: 1 knot = 0.5m per second or 1.8 km per hour).			
	2.2	Fly the width of the slick and record the time taken and the aircraft speed.			
	2.3	Calculate length and width using one of the following the formulae:			
		 Distance (in metres) = Time (seconds) x speed (knots) x 0.5. 			
		 Distance (in km) = Time (seconds) x speed (knots) x 1.8 			
	2.4	Calculate approximate slick area as length x width			
	Note	that this figure is an approximation of the area covered by all components			
	of the slick including films.				
3	Deter	mine the thickness and distribution of the oil in the slick.			
	3.1	Use the Table of oil colour below to estimate the thickness of the various			
		parts of the slick.			
	3.2	Estimate and record the relative proportions (Percentage Cover) of clean			
		water and each colour (or thickness) over the slick area. Use the			
		Percentage Cover Aid in the Figure overpage. Data should be recorded			
		on the Aerial Observation Form (in Appendix A) or similar data sheet.			
	3.3	Record other indications of thickness such as a distinct "edge" or a			
		dampening of the water surface "texture" both of which indicate a thick slick.			

Oil Colour and Thickness				
Description/ Colour	Thickness (mm)	Volume (m³/sq km)		
Silvery sheen	0.0001	0.1		
Bright bands of rainbow colour	0.0003	0.3		
Dull colours seen	0.001	1.0		
Yellowish brown slick	0.01	10		
Light brown or black slick	0.1	100		
Thick dark brown or black slick	1.0	1,000		
Page 1 of 2		M.3		

Page 1 of 2	М.З

Methodology Continued

4	If requ	uired, estimate volume of oil on the sea surface.			
	4.1	Calculate the area of each colour (thickness) of oil in the slick:			
		$A_c = \%C_c \times A_t$			
	4.2	Calculate the volume of oil in each colour by multiplying area by estimated thickness of oil in each colour (see Table on previous page).			
		$V_c = A_c \times T_c$			
	4.3	Calculate total Volume of oil by adding the volumes for each colour.			
		The Table provided below can be used to calculate volumes.			
	Note: Polaroid sunglasses or camera lens filters should be avoided as these				
	tend t	to darken the oil's colours. Reflected glare should be reduced by altering			
	the lo	cation of the aircraft (i.e. viewing with the sun behind the observer).			

Description of Oil	% Cover of	Area of each	Thickness of	Volume of
Thickness/ Colour	Colour %C _c	Colour	Colour T _c	the Slick V_c
Silvery sheen			0.0001mm	
Bright bands/rainbow			0.0003mm	
Dull colours			0.001mm	
Yellowish brown			0.01mm	
Light brown or black			0.1mm	
Thick dark brown/black			1.0mm	
Total				
	% Cover of	Area of oil in	Volume/ Sq	Total
	Slick %Ct	Slick (A _t)	Km can also	Volume of
			be used	Oil in Slick

Page 2 of 2 M.3	S S S S S S S S S S S S S S S S S S S		Page 2 of 2	M.3
-----------------	---------------------------------------	--	-------------	-----

GUIDELINE FOR VIDEO/PHOTO SURVEYING OF SLICKS AT SEA

M.4

Rationale

Regular video or photographic recording of a slick at sea can be useful in conveying the situation to the Incident Control Centre.

Me	thod	ology					
1	Sele	ct and commis	ssion aircraft.	Aircraft should	d have:		
	1.1	Downward vi	sibility (helico	pter/fixed wing	aircraft with ov	ver-fusela	age wing).
	1.2	Global (Geog	graphic) Posit	ioning System	(GPS).		
	1.3	Slow speed.					
2	Asse	emble equipmo	ent required:				
	2.1	Map or chart	, suitable for i	marking up (pre	eferably lamina	ted).	
	2.2	Pens, pencils	s and eraser.				
	2.3	Camera(s) (digital/video camera preferred, with date recording capability).					
		Note: Check batteries and film.					
	2.4	Map of coast	line (topograp	phic map rather	r than marine c	hart). Pr	eferred
		scale is 1:10	,000 to 1:30,0	000.			
	2.5	Reliable wate	ch (the aircraf	t will have a clo	ock).		
	2.6 Sunglasses.						
3	Obtain information on the predicted location of the slick.						
4	DISC	Discuss flight and surveillance programme with the Pilot.					
5	Repo	Report departure time flight path and EIA to air control.					
6	ondentake a higher attitude (up to 500m) rapid fly over of the area to gain an						
7	Conduct a low altitude survey of target shoreline. Use the following guidelines						
	fors	need and altit	ide (the pilot	will determine f	the limits to the	iowing gu ise):	
	Altitu	Altitude (m) 30 60 100 >100			100		
	Spee	ed (Knots)	20	30	50	1	Not
						Recon	nmended
	Note	Note: A new videotape or roll of film should be used for each new survey.					
	Digit	al camera me	nory should l	be cleared at th	ne end of each	survey.	
9	Reco	ord video or pl	notographic d	ata:			
	9.1	Take video o	or still pictures	s at a downwar	d angle of 30°-	45°.	
	9.2	Avoid photo	graphing into	the sun. Use c	of a polarising f	ilter shou	ld be
		avoided use	d as this will a	alter the colour	of the oil		
	9.3	Completed v	video tapes ar	nd film should b	e labelled with	:	
		9.3.1 Date	and time				
		9.3.2 Loca	ation (GPS/ge	ographic name	e) at which it wa	as started	d/finished.
10	At th	e end of each	survey:				
	10.1	Review: co	py videos, dig	gital photos, ha	ve film develop	ed (> 2 p	prints).
	10.2	Edit video l	apes/digital v	ideo if necessa	ary.		
	10.3	Label and	catalogue vide	eos/sildes/phot	0S.		
				Page 1 of 1			M.4

GUIDELINE FOR VISUAL MONITORING OF DISPERSANT OPERATIONS

M.5

Rationale

Ongoing monitoring of the effectiveness of dispersant application is required so that dispersants are used effectively and efficiently.

Me	thodo	ology				
1	Locat	e slick as per Guideline M.2.				
2	Note	the dimensions of the surface slick as per Guideline M.3.				
3	Avoic	I undertaking observation under low light conditions (dawn, dusk, in haze or				
	fog).					
4	Note:	Always report the presence, number and location of marine mammals,				
	reptile	es (turtles and crocodiles), birds and non-spill response vessels in the area.				
5	The usual colour of dispersed oil is a milky coffee or tea colour. The colour will					
	vary a	according to oil type and sea conditions such as sediment load. Generally,				
	dispersants are applied to dark coloured oils and not diesels or light products.					
6	Note	and be aware of the following sources of observational error:				
	6.1	"Herding" of the surface slick may occur when dispersants are applied.				
		This is due to the dispersant altering the oil-water surface tension causing				
		appear to break up or shrink, this is not offective dispersion. The oil				
		remains on the surface and the slick may eventually reform				
	62	Dispersant in segwater is a milky white colour. Observation of this				
	0.2	suggests that the dispersant is not working. However, this may be due to				
		inadequate targeting of the spraving operation rather than the non-				
		effectiveness of the dispersant itself.				
	6.3	In turbid waters, the dispersed oil plume may be difficult to see.				
	6.4	Remaining surface oil may mask underlying dispersed oil plumes.				
	6.5	Dispersants may take several minutes to a few hours to work effectively.				
		Absence of an immediate effect does not mean that dispersants are not				
		working.				
	6.6	If dispersant is being applied from a vessel, oil will not appear in the wake				
		of the vessel. This is not indicative of effective chemical dispersion.				
7	If no y	visible plume appears because conditions are not favourable for				
	obsei	vation, then sampling should be considered (Guideline M.8).				
8	Repo	rt any change in the colour or general appearance of the surface slick.				

Page	1	of	2
·····		•	_

M.5

Figure M.5.1 Dispersant Treated Oil (Photo: AMSA)

Figure M.5.2 Closeup of Dispersed Oil (Photo: Wardrop Consulting)

Page 2 of 2	M.5

GUIDELINE FOR SAMPLING SURFACE OIL SLICKS AND FILMS

M.6

Rationale

Oil samples may be required for analysis. Analysis may better determine oil physical character or determine its chemical character. The latter may be needed to quantify oil weathering or to identify the source of the oil.

Note: The sample taken should be <u>representative</u> of the oil. If the slick is variable in appearance, or if more than one oil may be present, then multiple samples should be taken.

Me	Methodology										
1	Determine number of samples required. Consider:										
	1.1	Size of slick.									
	1.2	Source of spill (number of potential oil slicks).									
	1.3	Distribution (number of locations) of slick.									
2	Deter	Determine size of sample needed: Some samples need to be divided and									
	distrik	outed for verification. It is better to divide a single sample than	to take								
	multip	ble samples from a slick, particularly if more than one oil could	be involved.								
3	Decide platform to sample from (response/other vessel, shoreline) Consider:										
	3.1 The potential for contamination from response vessels.										
	3.2	Logistics.									
	3.3	Weather and other safety considerations (staff training and e	xperience).								
4	Obtain sampling kits or supplies:										
	4.1	Sample jars (250 ml or other size). Pre cleaned, teflon or	As required								
		aluminium cap or alfoil barrier.	-								
	4.2	Tape (for sealing jars). 2cm wide.	2								
	4.3	Slick/pooled oil sampling equipment: Wooden spatulas/									
		tongue depressors or stainless steel spatulas/spoons.									
	4.4	Sheen sampling equipment: TFE fluorocarbon polymer	>1/sample								
		nets or small squares of sorbent.									
	4.5	Disposable gloves									
	4.6	Sample identification labels.									
	4.7	Sorbent padding for storage cooler.									
	4.8	Sample Log Sheets.									
	4.9	Sample storage coolers with pre-frozen freezer blocks.									
	4.10	Chain of Custody Forms.									
	4.11	Waterproof plastic envelope.									
	4.12	Decontamination equipment if needed, (Guideline G.2).									
5	Sample oil:										
	IMPORTANT: Volatile oils can be flammable and produce toxic vapours. They										
	should not be sampled by personnel in close proximity to the oil and NEVER										
	within enclosed spaces. In these cases, samples may be taken using sorbent										
	materials on the end of a fishing line. A fishing rod can be used to cast the										
sorbent into the oil from a safe distance.											
		Page 1 of 2	M.6								
5 5.1 Take sample from the thickest part of the slick or film. This is usually the "leading edge" of the slick. 5.2 If oil is not volatile, position vessel down wind from the oil so that oil is moving towards the vessel. This reduces the chance of contamination from the vessel (Alternately, use sorbent and fishing line). 5.3 Take sample from bow, or at least to the forward, of the vessel and avoid contamination from vessel engines. 5.4 For thick slicks: Use sampling implement to recover oil. Avoid using the sample jar to skim the oil. 5.5 For films: Use a piece of sorbent material to soak up the oil film. This may need to be passed through the film several times. 5.6 Place sample into clean jars and seal. Sample jars should be filled approximately 4/5ths full if oil is heavy or weathered. Expansion of the sample should not be a problem if samples are chilled properly – but it is better to be safe. Sorbents films or light, volatile oil samples should fill the jar to reduce evaporative loss (see Guideline M.6). Note: If sorbents are used to collect oil, a sample of clean sorbent should also be sent to ensure that no contaminants are present on this. 5.7 Label jars immediately with: 5.7.1 Sample number or code (Optional, but advisable for multiple sampling at a single location). 5.7.2 Sample number or code (Optional, but advisable for multiple sampling at a single location).	Met	Methodology Continued									
--	---	-----------------------	--	---	--	--	--	--	--	--	--
"leading edge" of the slick. 5.2 If oil is not volatile, position vessel down wind from the oil so that oil is moving towards the vessel. This reduces the chance of contamination from the vessel (Alternately, use sorbent and fishing line). 5.3 Take sample from bow, or at least to the forward, of the vessel and avoid contamination from vessel engines. 5.4 For thick slicks: Use sampling implement to recover oil. Avoid using the sample jar to skim the oil. 5.5 For films: Use a piece of sorbent material to soak up the oil film. This may need to be passed through the film several times. 5.6 Place sample into clean jars and seal. Sample jars should be filled approximately 4/5ths full if oil is heavy or weathered. Expansion of the sample should not be a problem if samples are chilled properly – but it is better to be safe. Sorbents films or light, volatile oil samples should fill the jar to reduce evaporative loss (see Guideline M.6). Note: If sorbents are used to collect oil, a sample of clean sorbent should also be sent to ensure that no contaminants are present on this. 5.7 Label jars immediately with: 5.7.1 Sample number or code (Optional, but advisable for multiple sampling at a single location). 5.7.2 Sample description (oil, debris, thick slick, film etc). 5.7.3 Time and Date (24 hr clock, Day/Month/Year).	5	5.1	Take sample from the thickest part of the slick or film. This is usually the								
 5.2 If oil is not volatile, position vessel down wind from the oil so that oil is moving towards the vessel. This reduces the chance of contamination from the vessel (Alternately, use sorbent and fishing line). 5.3 Take sample from bow, or at least to the forward, of the vessel and avoid contamination from vessel engines. 5.4 For thick slicks: Use sampling implement to recover oil. Avoid using the sample jar to skim the oil. 5.5 For films: Use a piece of sorbent material to soak up the oil film. This may need to be passed through the film several times. 5.6 Place sample into clean jars and seal. Sample jars should be filled approximately 4/5ths full if oil is heavy or weathered. Expansion of the sample should not be a problem if samples are chilled properly – but it is better to be safe. Sorbents films or light, volatile oil samples should fill the jar to reduce evaporative loss (see Guideline M.6). Note: If sorbents are used to collect oil, a sample of clean sorbent should also be sent to ensure that no contaminants are present on this. 5.7 Label jars immediately with: 5.7.1 Sample number or code (Optional, but advisable for multiple sampling at a single location). 5.7.2 Sample description (oil, debris, thick slick, film etc). 5.7.3 Time and Date (24 hr clock, Day/Month/Year). 			"leading edge" of the slick.								
moving towards the vessel. This reduces the chance of contamination from the vessel (Alternately, use sorbent and fishing line). 5.3 Take sample from bow, or at least to the forward, of the vessel and avoid contamination from vessel engines. 5.4 For thick slicks: Use sampling implement to recover oil. Avoid using the sample jar to skim the oil. 5.5 For films: Use a piece of sorbent material to soak up the oil film. This may need to be passed through the film several times. 5.6 Place sample into clean jars and seal. Sample jars should be filled approximately 4/5ths full if oil is heavy or weathered. Expansion of the sample should not be a problem if samples are chilled properly – but it is better to be safe. Sorbents films or light, volatile oil samples should fill the jar to reduce evaporative loss (see Guideline M.6). Note: If sorbents are used to collect oil, a sample of clean sorbent should also be sent to ensure that no contaminants are present on this. 5.7 Label jars immediately with: 5.7.1 Sample number or code (Optional, but advisable for multiple sampling at a single location). 5.7.2 Sample description (oil, debris, thick slick, film etc). 5.7.3 Time and Date (24 hr clock, Day/Month/Year).		5.2	If oil is not volatile, position vessel down wind from the oil so that oil is								
from the vessel (Alternately, use sorbent and fishing line).5.3Take sample from bow, or at least to the forward, of the vessel and avoid contamination from vessel engines.5.4For thick slicks: Use sampling implement to recover oil. Avoid using the sample jar to skim the oil.5.5For films: Use a piece of sorbent material to soak up the oil film. This may need to be passed through the film several times.5.6Place sample into clean jars and seal. Sample jars should be filled approximately 4/5ths full if oil is heavy or weathered. Expansion of the sample should not be a problem if samples are chilled properly – but it is better to be safe. Sorbents films or light, volatile oil samples should fill the jar to reduce evaporative loss (see Guideline M.6).5.7Label jars immediately with:5.7Sample number or code (Optional, but advisable for multiple sampling at a single location).5.7.2Sample description (oil, debris, thick slick, film etc).5.7.3Time and Date (24 hr clock, Day/Month/Year).			moving towards the vessel. This reduces the chance of contamination								
 5.3 Take sample from bow, or at least to the forward, of the vessel and avoid contamination from vessel engines. 5.4 For thick slicks: Use sampling implement to recover oil. Avoid using the sample jar to skim the oil. 5.5 For films: Use a piece of sorbent material to soak up the oil film. This may need to be passed through the film several times. 5.6 Place sample into clean jars and seal. Sample jars should be filled approximately 4/5ths full if oil is heavy or weathered. Expansion of the sample should not be a problem if samples are chilled properly – but it is better to be safe. Sorbents films or light, volatile oil samples should fill the jar to reduce evaporative loss (see Guideline M.6). Note: If sorbents are used to collect oil, a sample of clean sorbent should also be sent to ensure that no contaminants are present on this. 5.7 Label jars immediately with: 5.7.1 Sample number or code (Optional, but advisable for multiple sampling at a single location). 5.7.2 Sample description (oil, debris, thick slick, film etc). 5.7.3 Time and Date (24 hr clock, Day/Month/Year). 			from the vessel (Alternately, use sorbent and fishing line).								
avoid contamination from vessel engines. 5.4 For thick slicks: Use sampling implement to recover oil. Avoid using the sample jar to skim the oil. 5.5 For films: Use a piece of sorbent material to soak up the oil film. This may need to be passed through the film several times. 5.6 Place sample into clean jars and seal. Sample jars should be filled approximately 4/5ths full if oil is heavy or weathered. Expansion of the sample should not be a problem if samples are chilled properly – but it is better to be safe. Sorbents films or light, volatile oil samples should fill the jar to reduce evaporative loss (see Guideline M.6). Note: If sorbents are used to collect oil, a sample of clean sorbent should also be sent to ensure that no contaminants are present on this. 5.7 Label jars immediately with: 5.7.1 Sample number or code (Optional, but advisable for multiple sampling at a single location). 5.7.2 Sample description (oil, debris, thick slick, film etc). 5.7.3 Time and Date (24 hr clock, Day/Month/Year).		5.3	Take s	ample from bow, or at least to the forward, of the vessel and							
 5.4 For thick slicks: Use sampling implement to recover oil. Avoid using the sample jar to skim the oil. 5.5 For films: Use a piece of sorbent material to soak up the oil film. This may need to be passed through the film several times. 5.6 Place sample into clean jars and seal. Sample jars should be filled approximately 4/5ths full if oil is heavy or weathered. Expansion of the sample should not be a problem if samples are chilled properly – but it is better to be safe. Sorbents films or light, volatile oil samples should fill the jar to reduce evaporative loss (see Guideline M.6). Note: If sorbents are used to collect oil, a sample of clean sorbent should also be sent to ensure that no contaminants are present on this. 5.7 Label jars immediately with: 5.7.1 Sample number or code (Optional, but advisable for multiple sampling at a single location). 5.7.2 Sample description (oil, debris, thick slick, film etc). 5.7.3 Time and Date (24 hr clock, Day/Month/Year). 			avoid c	contamination from vessel engines.							
 sample jar to skim the oil. 5.5 For films: Use a piece of sorbent material to soak up the oil film. This may need to be passed through the film several times. 5.6 Place sample into clean jars and seal. Sample jars should be filled approximately 4/5ths full if oil is heavy or weathered. Expansion of the sample should not be a problem if samples are chilled properly – but it is better to be safe. Sorbents films or light, volatile oil samples should fill the jar to reduce evaporative loss (see Guideline M.6). Note: If sorbents are used to collect oil, a sample of clean sorbent should also be sent to ensure that no contaminants are present on this. 5.7 Label jars immediately with: 5.7.1 Sample number or code (Optional, but advisable for multiple sampling at a single location). 5.7.2 Sample description (oil, debris, thick slick, film etc). 5.7.3 Time and Date (24 hr clock, Day/Month/Year). 		5.4	For thic	ck slicks: Use sampling implement to recover oil. Avoid using the							
 5.5 For films: Use a piece of sorbent material to soak up the oil film. This may need to be passed through the film several times. 5.6 Place sample into clean jars and seal. Sample jars should be filled approximately 4/5ths full if oil is heavy or weathered. Expansion of the sample should not be a problem if samples are chilled properly – but it is better to be safe. Sorbents films or light, volatile oil samples should fill the jar to reduce evaporative loss (see Guideline M.6). Note: If sorbents are used to collect oil, a sample of clean sorbent should also be sent to ensure that no contaminants are present on this. 5.7 Label jars immediately with: 5.7.1 Sample number or code (Optional, but advisable for multiple sampling at a single location). 5.7.2 Sample description (oil, debris, thick slick, film etc). 5.7.3 Time and Date (24 hr clock, Day/Month/Year). 			sample	e jar to skim the oil.							
 5.6 Place sample into clean jars and seal. Sample jars should be filled approximately 4/5ths full if oil is heavy or weathered. Expansion of the sample should not be a problem if samples are chilled properly – but it is better to be safe. Sorbents films or light, volatile oil samples should fill the jar to reduce evaporative loss (see Guideline M.6). Note: If sorbents are used to collect oil, a sample of clean sorbent should also be sent to ensure that no contaminants are present on this. 5.7 Label jars immediately with: 5.7.1 Sample number or code (Optional, but advisable for multiple sampling at a single location). 5.7.2 Sample description (oil, debris, thick slick, film etc). 5.7.3 Time and Date (24 hr clock, Day/Month/Year). 		5.5	For film	ns: Use a piece of sorbent material to soak up the oil film. This							
 5.6 Place sample into clean jars and seal. Sample jars should be filled approximately 4/5ths full if oil is heavy or weathered. Expansion of the sample should not be a problem if samples are chilled properly – but it is better to be safe. Sorbents films or light, volatile oil samples should fill the jar to reduce evaporative loss (see Guideline M.6). Note: If sorbents are used to collect oil, a sample of clean sorbent should also be sent to ensure that no contaminants are present on this. 5.7 Label jars immediately with: 5.7.1 Sample number or code (Optional, but advisable for multiple sampling at a single location). 5.7.2 Sample description (oil, debris, thick slick, film etc). 5.7.3 Time and Date (24 hr clock, Day/Month/Year). 			may ne	eed to be passed through the film several times.							
 approximately 4/5ths full if oil is heavy or weathered. Expansion of the sample should not be a problem if samples are chilled properly – but it is better to be safe. Sorbents films or light, volatile oil samples should fill the jar to reduce evaporative loss (see Guideline M.6). Note: If sorbents are used to collect oil, a sample of clean sorbent should also be sent to ensure that no contaminants are present on this. 5.7 Label jars immediately with: 5.7.1 Sample number or code (Optional, but advisable for multiple sampling at a single location). 5.7.2 Sample description (oil, debris, thick slick, film etc). 5.7.3 Time and Date (24 hr clock, Day/Month/Year). 		5.6	Place s	sample into clean jars and seal. Sample jars should be filled							
 Sample should not be a problem if samples are chilled properly – but it is better to be safe. Sorbents films or light, volatile oil samples should fill the jar to reduce evaporative loss (see Guideline M.6). Note: If sorbents are used to collect oil, a sample of clean sorbent should also be sent to ensure that no contaminants are present on this. 5.7 Label jars immediately with: 5.7.1 Sample number or code (Optional, but advisable for multiple sampling at a single location). 5.7.2 Sample description (oil, debris, thick slick, film etc). 5.7.3 Time and Date (24 hr clock, Day/Month/Year). 			approx	imately 4/5ths full if oil is heavy or weathered. Expansion of the							
 better to be sale. Sorbents hims of light, volatile oil samples should hill the jar to reduce evaporative loss (see Guideline M.6). Note: If sorbents are used to collect oil, a sample of clean sorbent should also be sent to ensure that no contaminants are present on this. 5.7 Label jars immediately with: 5.7.1 Sample number or code (Optional, but advisable for multiple sampling at a single location). 5.7.2 Sample description (oil, debris, thick slick, film etc). 5.7.3 Time and Date (24 hr clock, Day/Month/Year). 			sample	e snould not be a problem if samples are chilled properly – but it is							
Inegration reduce evaporative loss (see Guideline M.6). Note: If sorbents are used to collect oil, a sample of clean sorbent should also be sent to ensure that no contaminants are present on this. 5.7 Label jars immediately with: 5.7.1 Sample number or code (Optional, but advisable for multiple sampling at a single location). 5.7.2 Sample description (oil, debris, thick slick, film etc). 5.7.3 Time and Date (24 hr clock, Day/Month/Year).			better to be safe. Sorbents films or light, volatile oil samples should fill the jar to reduce evenerative less (and Cuideling M.6).								
5.7 Label jars immediately with: 5.7.1 Sample number or code (Optional, but advisable for multiple sampling at a single location). 5.7.2 Sample description (oil, debris, thick slick, film etc). 5.7.3 Time and Date (24 hr clock, Day/Month/Year).			Noto:	Note: If sorbents are used to collect oil a sample of clean sorbent							
5.7 Label jars immediately with: 5.7.1 Sample number or code (Optional, but advisable for multiple sampling at a single location). 5.7.2 Sample description (oil, debris, thick slick, film etc). 5.7.3 Time and Date (24 hr clock, Day/Month/Year).			should also be sent to ensure that no contaminants are present on this								
5.7 Sample number or code (Optional, but advisable for multiple sampling at a single location). 5.7.2 Sample description (oil, debris, thick slick, film etc). 5.7.3 Time and Date (24 hr clock, Day/Month/Year).		57	Lebel iore immediately with:								
 5.7.1 Sample number of code (Optional, but advisable for multiple sampling at a single location). 5.7.2 Sample description (oil, debris, thick slick, film etc). 5.7.3 Time and Date (24 hr clock, Day/Month/Year). 		5.7	571	Sample number or code (Ontional, but advisable for multiple							
5.7.2Sample description (oil, debris, thick slick, film etc).5.7.3Time and Date (24 hr clock, Day/Month/Year).			5.7.1	sampling at a single location)							
5.7.3 Time and Date (24 hr clock, Day/Month/Year).			572	Sample description (oil debris thick slick film etc)							
			5.7.3	Time and Date (24 hr clock, Day/Month/Year).							
5.7.4 Location (GPS coordinates or other description).			574 Location (GPS coordinates or other description)								
5.7.5 Name of person taking the sample.	5.7.5 Name of person taking the sample.										
5.7.7 Witness (If a sample for legal purposes).			5.7.7	Witness (If a sample for legal purposes).							
5.8 Record the above information on a "Sample Log". Reference any		5.8	Record	the above information on a "Sample Log". Reference any							
photographs taken or other observations on the log.			photog	raphs taken or other observations on the log.							
6 Place sample in a cooled container (see Guideline G.1).	6	Place s	sample i	n a cooled container (see Guideline G.1).							
7 Complete chain of custody form for each container (see Guideline G.1).	7	Comple	ete chaii	n of custody form for each container (see Guideline G.1).							

Page 1 of 2	M.6

GUIDELINE FOR SAMPLING OF SUBSURFACE WATER

M.7

Rationale

The amount or character of oil or chemicals suspended or dissolved in the water column may require monitoring for identification of source, damage assessment, determination of weathering, or for oil mass balance calculations. This Guideline provides methods for obtaining discreet water samples at variable water depths. *Note, Water samples can also be collected using the continuous flow fluorometer described in Guideline M.7.*

GUIDELINE FOR FIELD MEASUREMENT OF OIL IN WATER

M.8

Rationale

Determining the oil content of subsurface water samples may be required to assess if dispersed oil is present. This may be needed to determine whether dispersants are working or to determine the distribution (e.g. dilution) of dispersed oil in order to assess or predict possible environmental damage. This field method is based on fluorometry.

Note: Fluorometry measures the level of both chemically and physically dispersed oil in water. It cannot, in itself, be used to quantify the percentage efficiency of dispersant application activity. This can be estimated using measures of the plume area, depth and distribution of hydrocarbons (total dispersed oil) and comparing this to "control" (untreated areas). The latter would measure natural dispersion.

Me	thod	lology					
1	Determine location of slick and extent of dispersed and undispersed oil (Guidelines M.2 to M.4).						
2	Deploy to area. Measurements are taken from a suitable vessel using a						
	cont	inuous flow fluorometer. Aerial support is recommended for targeti	ng the				
	slick	and plume.					
3	The	monitoring team should comprise two or three persons and include	e at least				
	one	technician trained in the use of the fluorometer.					
4	Idea	lly, data should be collected at the following times/locations:	_				
	4.1	Clean seas; no surface oil and preferably prior to dispersant spray	ving.				
	1.0	This provides "background" hydrocarbon levels of the sea.					
	4.2	Beneath olled surface waters before dispersant spraying. This pro	ovides an				
	12	estimate of physically dispersed oil in the water.					
5	4.5 Roa	dings are usually taken along a set transect and may be at a single	denth				
5	(แรม	ally 1 metre) or at a series of depths (usually 1-10m)	uepin				
6	Readings may be continuous (usually only 1 or 2 depths) or at set locations						
Ũ	(may use multiple depths in this case). For continuous samples at two depths						
	two fluorometers are required.						
7	The vessel should pass through the monitoring area at about 1-2 knots.						
8	To the extent possible readings should be taken over more than one transect, or						
	along a non-linear transect so as to cover the monitoring area.						
9	Data is to be collected in real time using the built in data-logging device. This						
	should be backed up at regular intervals by manual recording of digital readout.						
10	The fluorometer must be calibrated against solutions with known oil						
11	I he tollowing data should be recorded:						
	11.1	Date and time of reading					
	11.2	Position (Ifom GPS)					
	11.3	Depth of reading					
	11.4	Reduiliy					
		Page 1 of 2	M.8				

1						
Met	Methodology Continued					
12	Manually taken results should be transmitted to the nominated person in the					
	Incident Control Centre (or other nominated location).					
13	Water samples should be taken from the flow-through water hose. These					
	should be placed in clean glass bottles and labelled as per "10" above. These					
	samples should be analysed for total petroleum hydrocarbons in order to					
	validate the fluorometer output. The number of samples taken will depend on					
	the scale of the monitoring programme and the need for quantitative data.					

GUIDELINE FOR SAMPLING OF SEABED SEDIMENTS

M.9

Rationale

Oil can become incorporated into offshore sediments through natural processes or due to shoreline cleanup methods. If this accumulates to a significant extent then alternative cleanup strategies may be required. This monitoring method is usually only required in shallow waters. Grab Samplers or Drop Corers can be used. The former are suitable for the wider set of sediments and sea conditions. Sample handling is also easier. Sample volume should be consistent between sites and surveys to allow cross comparison.

Methodology										
1	Deter	Determine the number of samples required. Consider:								
	1.1	Area of possible contamination.								
	1.2	Currents.								
2	Decic	le platform to sample from (response/other vessel, shoreline).	Vessels							
	shoul	d:								
	2.1	Be suited to expected weather and other safety consideration	ns (staff							
		training and experience).								
	2.2	Be stable and suitable for expected water depths and sea sta	ates.							
	2.3	Provide adequate deck space (vessel should be > 5m).								
	2.4	Have shelter (e.g closed cabin).								
	2.5	Be equipped with communications, GPS and life preservation	n equipment.							
	2.6	Comply with state boating regulations re safety equipment.								
3	Obtai	n sampling kits or supplies:	· - · ·							
	3.1	Sample jars (250 ml or other larger size if biological	As Required							
		samples are to be taken). Pre cleaned, tetion or aluminium								
	0.0	cap or alfoil barrier.	-							
	3.2	Tape (for sealing jars). 2cm wide.	2							
	3.3									
	3.4	Sampling equipment (grab or corer: see 5) Note: if	. 1/a a manda							
		biological samples are to be taken samples should be at	> i/sample							
		least 10 cm depth and have a minimum surface area of at								
	2.5	Dispensible gloves								
	3.5	Disposable gloves								
	3.0	Sample identification labels.								
	3.7	Somela Log Shoots								
	3.0	Sample Log Sheets.								
	3.9	Chain of Custody Forms								
	3 11	Waterproof plastic envelopes (for forms)								
	3.12	Decontamination equipment (Guideline G 2)								
Δ	Samr	blers should be deployed in clean water, not through surface o	il Δ							
-	perim	eter may be used to keep the surface clean (see Guideline 7)								
L	1 20.11		•							
		Page 1 of 3	M.9							

33

M.9	Meth	odology	Continued						
5	Obtai	n sample	es:).					
	5.1	Grab Sa	mpler: Spring loaded (see Figure M.9.1):						
		5.1.1	Lower the grab at a slow, constant speed (about 0.3m/second) to						
			avoid prematurely triggering the grab.						
		5.1.2	Once the seafloor is hit and the grab is triggered, recover the						
			grab slowly.						
		5.1.3	If sediments are muddy,	and the second se					
			the grab may be cleaned						
			in surface waters prior to						
			bringing it on deck (Note:						
			This should <u>not</u> be done						
			It surface waters that						
		544	may be olly).						
		5.1.4	The Grab Sampler						
			should be opened over a	dih					
			sneet of plastic (but <u>not</u>						
		515	Pehris such as seagrass						
		5.1.5	or algae should be						
			separated from the						
			sediment. The presence						
			of this should be logged.						
		5.1.6	Note: This seagrass and						
			algal material may be						
			required for analysis,						
			e.g. for the presence of						
			entrained oil.						
		5.1.7	Sediment samples						
			should be removed from						
			the centre of the grab						
			sample (i.e. away from						
			the sides) using clean	Figure M.9.1 Example of Spring-					
			spatulas or scoop, and loaded Grab Sampler						
		540	placed in clean jars. (Photo: Cawthron Inst.)						
		5.1.8	Label jars with location, water depth, time and date, description.						
		5.1.9	Mach Crob Complexity the	DIN.					
		5.9.10	vvasn Grab Sampler in the	e sea, then distilled water. (see					
<u> </u>									

Page 2 of 3	
-------------	--

M.9

M.9	A.9 Methodology Continued								
5	5.2	Drop Co	pre Sampler:						
		5.2.1	Lower Corer, avoiding	8 🖬					
			twisting of lines. Allow						
			Corer to "free fall" the last						
			5-6m or so to the seafloor.						
		5.2.2	Recover Corer at a very	SA					
			slow, regular rate (<0.3						
		500	Make aure that the Carer	1 1 m					
		5.2.3	doos not strike the side of						
			the vessel	and					
		524	Always hold the Corer in a						
		0.2.1	vertical position and seal						
			the ends (with. supplied	and the second s					
			caps) as soon						
			as possible Note: The top	Figure M.9.1 Deployment of					
			cap should be clearly	Spring-loaded Grab Sampler					
			marked "TOP" and	(Photo: Sakhalin Energy Investment					
			attached to the correct	Company)					
			end of the Corer.						
		5.2.5	Attach waterproof labels (Tags are easier). Labels should note						
			location, water depth, time and date, description including length						
		526	or sediment core (samples may settle during transportation).						
6		0.2.0	Store cores upright.	Quideline (C.1)					
6	A Sar	пріе Log	should be maintained (see C	Suideline G.1).					

Page 3 of 3	M.9
	•

3.3 Marine Environmental Effects

Marine biological resources are sometimes included in Type 1 monitoring to guide response options and cleanup activities, or to assist in media and public relations management. Detailed biological assessments are more commonly a Type 2 monitoring programme aimed at determining the effects of a spill.

The monitoring of some biological effects, such as tainting of commercial or recreational food species, can be considered a Type I monitoring programme if information is needed to manage media or public perceptions of damage, or to decide whether a fishery should be temporarily closed or not. A programme with these objectives <u>may</u> be more limited in scope than one aimed at quantitatively determining the extent of tainting and calculating economic damages.

Biological assessments must take into account the particular circumstances of a spill incident, and often require expert input to ensure the study objectives are met.

3.3.1 Habitats

Offshore of the shoreline, monitoring may be divided into three broad habitat areas:

- <u>Surface water</u>: As most fresh oils float on seawater, organisms at the water surface are usually most vulnerable. Marine birds and mammals (particularly seals) are highly vulnerable because oil adheres readily to feathers and fur.
- <u>Water column</u>: Water column organisms are less vulnerable but can be exposed when oil is dispersed into the water column. Plankton and nekton are often affected, but effects are usually localised. Natural recovery of populations is usually rapid.
- <u>Seabed</u>: Seabed (benthic) communities are generally only of concern in shallow areas, and areas where oil either sinks or is entrained within sediment, e.g. by wave action or remobilisation of oiled shoreline sediment.

Each habitat area contains a range of biological, commercial and recreational resources that can potentially be affected by oil. The circumstances and location of a spill will play a large part in the likely exposure of organisms to a spill.

Subtidal sampling must recognise that there are many different habitat types e.g. coral reefs, seagrass, rocky/boulder habitat, sandy/muddy seabed. The resources and values of each will vary, and the sampling techniques used will often be different for different components within and between habitats.

3.3.2 Target Fauna and Flora

Water Column

Type I water column monitoring rarely involves a population level assessment of plankton or other marine fauna and flora.

This is because plankton concentrations are usually highly variable, recover rapidly following a spill, and establishing a cause and effect relationship between spilt oil and plankton impacts is very difficult, even with extensive sampling.

Monitoring should only be considered if there is a very high potential for oil to affect a known concentration of plankton, and if there is likely to be a significant and ongoing impact as a result. For example, if dispersants were to be used where a local fishery relied on seasonal plankton (e.g. presence of food concentration or presence of juveniles, such as lobsters), monitoring may be needed to assess if plankton are present or to measure the effects of dispersant or other response actions.

<u>Seafloor</u>

Monitoring studies of soft seafloor communities generally target "infauna" (animals that are present <u>in</u> the sediment), "epifauna" (animals that are present <u>on</u> the sediment) and plant assemblages. Infauna and small epifauna are generally monitored through sampling and these can be collected through a variety of methods, usually large hand cores or grab samplers.

These communities may be highly variable over both space and time and consequently, it can be relatively difficult to separate background variation from effects. To overcome this, semi-quantitative methods may be used including:

- Recording key species as simply rare, common, or abundant according to a defined density or frequency of observation category
- Percentage cover estimates of sessile (attached or encrusting) species on substrate, and
- Dredging, this provides a broad-scale indication of epibiota presence and some indication of relative abundance.

Seagrasses, corals and reef communities are usually monitored visually using divers or remote operated vehicles (ROVs), recording the numbers, area or percentage cover of epibenthic species. These are usually recorded along transects or in quadrats (Section 5.1.2).

If seafloor communities are to be monitored it is advisable to simultaneously monitor sediment contaminant levels. In this way any relationships between contaminant levels and biological effects can be examined.

3.3.3 Parameters

A number of effects may be monitored:

- <u>Mortality</u>: For large animals and plants this can be monitored using relatively simple procedures. Smaller organisms, such as plankton, require specialist input. Mortality of mobile organisms can be difficult to interpret particularly if estimates are based on counts of beach-cast individuals. In any case, estimates of bodies lost at sea are not likely to be accurate. Identification of mortality amongst plants may also need specialist input.
- <u>Sublethal effects</u>: Sublethal effects may be difficult to monitor and this generally requires specialist input. The most common example of a sublethal effect is tainting (Guideline 14). Other potential sublethal effects include bioaccumulation, behavioural changes or histopathological effects (e.g. presence of disease or lesions) but these are unlikely to be monitored as part of a Type I monitoring programme unless such effects can be directly attributed to the spill or response and if the information would influence response decisions.

- <u>Changes in community structure</u> e.g. changes in species' diversity or relative proportions.
- <u>Tainting</u>: Tainting occurs when oil is ingested by fish, crustaceans or molluscs and hydrocarbons are incorporated into fatty tissues. This imparts an oily taste to the meat and makes it unpalatable. Tainting can adversely affect commercial fisheries and also predatory species such as birds. Taint can be detected through chemical analysis or by a panel of individuals undertaking a "taste test". The latter method is slower to establish, requires testing and calibration of participants and on occasion may be of questionable reliability. It is, generally, unsuitable as a Type I monitoring method. Only sample acquisition and chemical analysis is discussed in Guideline M.14. If tainting is detected then further monitoring may be required to determine the extent or financial cost of this (see IMO/FAO, 2003, Reilly and York, 2001, and Yender et al., 2002).

GUIDELINE FOR MONITORING DAMAGE TO COMMERCIAL OR RECREATIONAL SPECIES

Rationale

Commercial and recreational marine species may be damaged by oil or response methods such as the use of dispersants or other chemical agents or by in situ burning. Generally, natural and sampling variation make detecting such damage difficult.

Ме	Methodology							
1	Deter	ermine monitoring locations:						
	1.1	1 Species or communities should be observed or collected from						
		affected (oiled) and unaffected (unoiled) control areas.						
	1.2	A number of affected and unaffected areas should be monitored.						
2	Deter	mine species to	o be r	nonitored or sampled.				
3	Deter M.10	mine paramete 1).	r to n	neasure and select app	ropriate method (Tabl	е		
		Tab	ole M	10.1 Parameters and	Methods			
	Pa	rameter		Method	d/ Comment			
Cha	anges	n density or	Stra	atified sampling with	Not recommended f	or Type I		
dist	ributio	า.	net	s, trawls, traps.	monitoring due to so effort.	ale of		
Nu	mber o	f organisms in	Mea	asuring catch: effort	Suitable for Type I			
a d	efined	area	ratio	o of commercial	monitoring.			
			and	/or recreational	Be wary of false reporting of			
				ing.	effort.			
Tainting			Sample commercial/		Guideline M.14.			
				reational catch and				
			ana	liysis of tissue.	Guideline G.1.			
FIS	h Kill	Mortality	Est	mate based on	Quantitative monitor	ring is		
(OD	serveo) (Numbers)	ran	dom trawling	Unlikely to be required for Type I monitoring.			
		(woight)	(nu	aro motro of surfaco				
		(weight)		are metre or surface	Would normally suffice to balt			
				a of observed kill)	response activity			
				mate based on aerial	Generally difficult			
				veillance.	Guidelines M.2. M.3 and M.4			
		Cause of	Sar	npling from vessel	Guideline M.7.			
		death	follo	wed by:				
			а	Tissue analysis.	Guideline G.1.			
			b	Gut contents.	Presence of oil.			
			С	Pathology.	Gill damage.	Gill damage.		
				Page 1 of 1		WI.10		

M.10

GUIDELINE FOR MONITORING DAMAGE TO MARINE MEGAFAUNA

Rationale

Large marine species may be damaged by oil or response methods such as the use of dispersants or other chemical agents, by in situ burning or by vessels involved in cleanup. The presence of megafauna, whether alive or dead, should be monitored throughout a spill response.

Methodology								
1	Deteri	nine sai	mpling locati	ons:				
	1.1	Specie	Species or communities should be observed or collected from both					
		affecte	d (oiled) and	l unaffected (unoiled) cont	rol areas.			
	1.2	A num	ber of affecte	ed and unaffected areas s	hould be monitored.			
2	Deteri	nine spe	ecies to be n	nonitored.				
3	Deteri	nine pa	rameter to m	easure and select approp	riate method (Table			
	M.11.	I).						
			Table M.	11.1 Parameters and Mo	ethods			
	F	aramet	er	Method	d/Comment			
Pre	sence	or Gro	oup or	Aerial surveys.	Requires expert personnel.			
abs	ence	spe	cies	Boat surveys.				
Mo	rtality	Nur	nber of	Aerial surveys.	Expert personnel			
		dead Cause of		Boat surveys.	recommended.			
				Collection and analysis	Guideline G.1			
		dea	ith	of biological samples,	Done by veterinarian:			
				and pathology	Eye, nose, and/or gut			
				examination.	damage or clogging, gut			
-					contents.			
Sta	Status		ivity	Boat/shoreline	Requires expert personnel.			
(Numbers)				surveys.				
		Oile	ed/unoiled	Boat/shoreline	Requires expert personnel.			
		_		surveys.				
		Fee	eding/not	Boat/shoreline	Requires expert personnel.			
CA	CAUTION! Personnel should not be in known crocodile areas unless							
acc	accompanied by an experienced Wildlife Officer.							

(1) Crocodiles, turtles, seals, sea lions, dugongs and cetaceans (whales/dolphins).

Page 1 of 1

M.11

GUIDELINE FOR MONITORING DAMAGE TO MARINE FLORA

M.12

Rationale

The presence of emergent or shallow marine flora such as kelps and other algaes, or seagrass can be a major constraint on response activities. These species and associated communities can be damaged by oil, vessel activity, use of chemical agents and in situ burning. Shallow and emergent species may be damaged by containment and recovery operations.

Me	Methodology										
1	1 Determine monitoring locations:										
	1.1	Species or communities should be observed in both affected (oiled or									
		cleaned) and unaffected (unoiled or uncleaned) control areas.									
	1.2 A number of affected and unaffected areas should be monitored.										
2	Detern	nine	species to be mon	itored.							
3	Detern	nine	parameter to meas	sure and select appropriat	te method (Table M.12.1).						
			Table M.12	1 Parameters and Meth	ods						
		Para	ameter	Method/	Comment						
Dis	tributior	n of	% cover on total	Boat/shoreline surveys							
Oil	on Plar	nts	plant area.	Based on a visual							
				estimate of % cover							
Pla	nt		Depth/tidal	Boat/shoreline surveys	Unlikely to be a Type I						
Dis	tributior	ו	elevation.		monitoring programme						
Ab	undance	Э	% cover of sea	Aerial/satellite surveys	for large plants, as loss						
(Lc	ss of		or sediment	Visual estimate of	of whole plants or						
pla	nts)		surface	substrate or sea	significant biomass may						
				surface covered.	occur over a longer time						
Los	ss of		% cover of sea	Reduced plant	period than the						
bio	mass.		surface or	coverage is the	response.						
			seafloor	simplest indicator of							
			loss of biomass.	Guideline S.4.							
Lea	Leaf/frond		Chlorosis	Boat/shoreline surveys	Loss of pigment may be						
damage			(bleaching). No.	Aerial surveys	an early sign of						
			of leaves or %	Leaves/fronds go	damage.						
area affected yellow, loss of colour.											
(1)	(1) These need to be compared to unoiled or uncleaned "control" areas.										

|--|

GUIDELINE FOR MONITORING DAMAGE TO PLANKTON

```
M.13
```

Rationale

Monitoring of plankton numbers is an unlikely for Type I monitoring because numbers may vary greatly, making non-gross effects difficult to detect, and the fact that recovery is likely to be rapid –either through reproduction or ingress of plankton from unaffected areas. Monitoring of specific plankton, such as larvae of commercial species, may needed to safeguard against adverse effects of response activities such as the use of chemical response agents or in situ burning methods.

Ме	Methodology						
1	Determine monitoring locations: A number of affected and unaffected areas						
	should I	ould be monitored.					
2	Determi M.13.1)	ine parameter :	to measure and sele	ct appropriate method (Table			
		Table	e M.13.1 Parameter	rs and Methods			
	Para	meter		Comment			
Number of Organisms		Biomass	Boat surveys; plankton net trawls (see Figure M.13.1).				
Mortality		Proportion of dead plankton	Boat surveys; plankton net trawls.				
			Laboratory or on site assessment, if laboratory assessment then expert packing and handling of samples is required. This task generally, requires expert interpretation.				
Sublethal effects		"Moribund" zooplankton	Unlikely Type I monitoring. The significance of sublethal effects. are difficult to assess in the short time frame available.	Figure M.13.1 Plankton Net Trawl Sampler (Photo: Cawthron Institute)			

Page 1 of 1	M.13

GUIDELINE FOR SAMPLING OF ORGANISMS FOR TAINT TESTING

Rationale

Fish, crustaceans and shellfish may ingest oil or oily sediments, resulting in the incorporation of hydrocarbons in fatty tissues. This can cause the meat to have an oily taste (or "taint"). It may be necessary to monitor commercial or recreational species to detect whether this has occurred.

Me	thode	ology						
1	Dete	rmine s	ampling locations:					
	1.1	Fish, c	crustaceans or molluscs should be collected from both aff	ected				
		(oiled)	and unaffected (unoiled) areas. Species may contain					
		"backg	ground" hydrocarbons unrelated to the spill source.					
	1.2	A num	ber of affected and unaffected areas should be sampled	(see 3.1).				
	1.3	Locati	on should be selected on the basis of the objectives of th	е				
		progra	mme, e.g: If tainting of commercial fish is being monitore	d then fish				
		samples should be obtained from commercial fishing areas.						
2	Dete	rmine s	pecies to be sampled. Species should be selected on the	e basis of				
	the o	bjective	es of the programme, e.g. if tainting of commercial fish is	being				
	moni	tored th	ien fish of a commercial species <u>and size</u> , should be targ	eted.				
3	Colle	ct samp	oles:					
	3.1	Samp	les can be collected from the chosen locations by monitor	ing teams.				
		This m	nethod is prone to a number of potential errors:					
		3.1.1	The locations may not be representative of the fishing a	rea or				
		0.4.0	predator feeding area.					
		3.1.2	Collection methods do not reflect the collection (targetin	g or catch)				
		242	methods of fisheries of predators.					
	3.1.3 It is a slow process and sample numbers are consequently smaller and samples can be collected from commercial or recreational fiching							
	3.2	\sim Samples can be collected from commercial or recreational fishing						
		operators. This avoids the potential sources of error $(3.1.1 - 3.1.3)$, but:						
	3.2.1 This method cannot be used for other objectives, e.g. potential							
		effects on predators.						
		J.Z.Z	The anecieu location will be areas that are oiled. Fis	anng				
		222	Eiching activities may extend over both "affected" and "u	upoffootod"				
	3.2.3 Fishing activities may extend over both "affected" and "unaffected"							
	(control ⁻) areas. It is possible to ask fishing operators to							
	some vessels or to obtain samples from a different fishing area							
	the last case these may not represent true "background" levels"							
4	Pack and handle samples as per Guideline G.1							
5	Send	for tiss	ue analysis. For commercial/recreational catch this will t	be based				
	on fa	tty tissu	e only. For animal prey species, the whole sample shou	ld be				
	analy	/sed (in	cluding gut contents). Individual tissues and gut can be a	analysed,				
	or the	<u>e whole</u>	sample can be homogenised and tested.	-				
			Page 1 of 1	M.14				

4.0 MONITORING THE SHORELINE ENVIRONMENT

4.1 Organisation of Shoreline Monitoring

Oil impacted shorelines are usually divided into discrete management areas to plan and implement a shoreline response. This is usually done by the Shoreline Coordinator or delegated Supervisors who define response "Divisions", "Sectors", and "Segments":

- **Divisions** are very large management units and are unlikely to be used in monitoring a spill response.
- Sectors are generally based on logistics considerations. Support facilities such as waste management sites, equipment stores, ablutions, canteens and other support facilities are usually organised within each Sector.
- Segments are lengths of shoreline that can be considered an individual work site. Segment boundaries will generally be defined on the basis of common substrate type, or less usually on common access points, ownership or jurisdiction. Sometimes cleanup or monitoring teams will define "Subsegments" "plots" or "transects" within a Segment. However, planning and response information is usually based at a Segment level, not at smaller units within it.

Guidelines for the delineation of Sectors and Segments are provided in Guideline S.1. Determination of Division, Sector and Segment boundaries is usually undertaken by the Shoreline Coordinator. Guidelines are provided here to ensure a consistency of approach in cases where monitoring teams precede cleanup teams.

It is important that Shoreline Cleanup personnel systematically record information that can be important for future monitoring programmes, e.g.

- The amount of sediment removed (type and volume).
- Oil distribution before and after cleaning (see Guidelines S.5 & S.6).
- Beach profiles before and after each cleanup (see Guideline S.3).
- Use of chemical agents:
 - Precise locations of applications onshore and inshore.
 - Volumes applied.
 - Product name.
- Cleanup activities (methods used, times).

Cleanup information must be recorded at the level of detail required by monitoring programmes and this requires the rapid achievement of a high level of coordination and cooperation between monitoring and shoreline response personnel.

Where detailed information is needed at scales smaller than Segments then this must be discussed with the Shoreline Coordinator and conveyed to Shoreline Supervisors and Team Leaders.

For example, information may be needed about the effect of a particular cleaning agent on beach fauna. If the agent is not applied uniformly across a Segment then any effect is unlikely to be detected unless the precise location of each application of the cleaning agent is recorded. The smaller the application area relative to the Segment area, the less likely it is that monitoring can detect the effect.

Information can be stored on Global (Geographical) Information Systems (GIS), such as the Australian National Plan Oil Spill Response Atlas (OSRA). This is discussed in Section 7.

Figure 4.1 Shoreline Segments:

Different shoreline types require different cleanup and monitoring methods and should be divided into Segments (Photo: Wardrop Consulting).

GUIDELINE FOR DETERMINING SECTORS AND SEGMENTS

S.1

Rationale

Shorelines should be divided into individual "work sites" and "monitoring sites" so that data can be recorded systematically.

Me	Methodology							
1	Identify length of shoreline impacted or that could be impacted by oil.							
2	Consult topographic map and:							
	2.1	2.1 Identify access to shoreline.						
	2.2	Estimate travel time	e between consecutive shorelines.					
	2.3	Note available sup	port areas (open spaces, car parks).					
3	Divid	Divide shorelines into Sectors using the following guidelines.						
	Secto	ors are based on log	istics; i.e. there may be little easy access between the					
	Secto	ors but there must be	easy and common access within Sectors. For large					
	scale	responses, this cou	Id mean that each Sector may have a separate					
	equip	Troval time betwee	nmand centre, canteen, etc.					
	3.1	two bours	in any two parts of the shoreline should be less than					
	32	Travel time betwee	n nominated Operations/Support Centres and all					
	0.2	shorelines within th	e Sector should be less than 1 hour.					
4	Name	e (number) Sectors a	and mark on maps or GIS (record GPS coordinates of					
•	boun	daries).						
5	Divid	Divide each Sector into Segments. Segments should be delineated using the						
	following guidelines:							
	Segments are generally "work sites" and boundaries are based on substrate,							
	shore	shoreline type and length.						
	5.1	5.1 Segments should be comprised of the same substrates type or						
		combination of substrates (refer to Guideline S.2). Substrate type in the						
	oiled zone (usually the upper intertidal zone) is of primary importance.							
	5.2 Other features affecting the choice of cleanup should be constant within							
	Drainage Exposure (wave energy) Biological chara							
Gradient Access point(s)								
	5.3 In some Segments, tidal zones are made up of quite different substr							
	and may need different cleanup methods. These can be subdivided							
		Subsegments base	ed on tidal elevation.					
6	Name	e (number) Segment	s and mark on maps or GIS (record GPS coordinates					
	of bo	undaries).						
								
1			Page 1 of 1					

Page 1 of 1

S.1

4.2 Physical Environment

The physical characteristics of a shoreline largely determine how oil will behave over time, how the shoreline can most effectively be cleaned, and the likelihood that it can be damaged by oil and cleanup activities. The physical character of a shoreline can be described in terms of:

- Substrate type.
- Form;
 - Geomorphological type.
 - Dimensions.
 - Profile or gradient.
- Energy (winds, waves).

4.2.1 Substrate Type

The simplest way of describing substrate is on particle size (Guideline S.2). This, in part, determines the size of the spaces between particles, and this in turn influences the depth to which oil will penetrate and the ease with which wave action will remove the oil. These considerations are important in determining the need for, and type of, shoreline cleanup.

Other considerations may also be important, such as:

- The type of material that the substrate is made of. Sandstones and other porous rocks are more difficult to clean than denser rock types.
- Surface character of the particles. Boulders that are creviced or have uneven surfaces are more difficult to clean than smooth surfaces.
- Whether the substrate is natural or artificial. This reflects differences in sensitivity either real or perceived.
- Shape of the substrate. Flat rocks have less "interstitial space" than rounded ones.

4.2.2 Shoreline Form

The size and shape of a shoreline Sector is important in evaluating cleanup options and activities. In particular, gradient (slope), width (LTM to HTM) and height (for cliffs and dunes) are important parameters for logistics. For smaller substrate shorelines (mud to cobble) these may change naturally, or be changed by cleanup activity.

On sandy shorelines subject to intrusive cleanup such as mechanical cleanup, monitoring of the beach profile is recommended as inadvertent altering of profile can lead to changes in sand deposition and removal by waves and tides.

4.2.3 Shoreline Energy

Shoreline energy is best estimated on the basis of shoreline type and substrate (see Figure 4.2). However, shorelines in some arid areas have very low sediment loads in the water due to limited local river output. Consequently, an absence of fine sediments or the presence of exposed bedrock does not always indicate high energy.

Local knowledge should always be sought.

Energy	Low						>>> High
Substrate	Mud	Sand	Grits	Pebble	Cobble	Boulder	Bedrock
Form	Swarr	nps Flats	6	Beach	R	leefs	Cliffs
Gradient/ Slope	Flat		Gentle	slope	Steep	slope	Vertical

Figure 4.2 General Indicators of Shoreline Energy

GUIDELINE FOR CHARACTERISING SHORELINE SUBSTRATE

Rationale

Substrate type (particle size) determines the size of the spaces between particles and this in turn influences the depth to which oil will penetrate, and the ease with which wave action will remove the oil. These considerations are important in determining the need for, and type of, shoreline cleanup.

Methodolo	Methodology					
Туре	Abbr.		Descriptive Terms	Explanation		
Bedrock	R	•	Porous/non-porous	Porosity and crevices		
or		•	Broken/not broken	increase the likely		
Rock			(crevices/no crevices).	persistence of the oil.		
Boulder B		•	As above.	>256mm diameter:		
				Larger than a head.		
Cobble	С	•	Porous (e.g. coral,	64 – 256mm:		
			pumice)/non-porous.	Fist or brick to head-sized		
Pebble	Р	•	Or use "shingle" if	4 – 64mm:		
			flattened.	Pen diameter to fist sized.		
Granules/	G	•	Rounded/flat.	2 – 4mm diameter.		
Gravel		•	Compacted/loose.			
Sand	S	•	Fine to coarse.	0.06 – 2mm diameter.		
Mud/Silt/	M • Note organic matter <0.06		Note organic matter	<0.06mm diameter.		
Clay			(debris/ fauna/ flora).	Field Test: Mix with water: If		
		•	Consolidated/loose.	it "clouds up" it is silt/mud. If		
		•	Dry (e.g. mud cliffs).	it sinks/clears it is sand.		
Earth/ Soil	E	•	Generally only applicable	to cliffs and seawalls.		
Ice	I	•	Likely only in the Antarctic	c territories.		
Shellgrit	Sh	•	Wet/dry.	Usually with sand (Sh/S).		
Coral ⁽¹⁾	Со	•	Rubble/Boulder/	Use to describe dead coral		
			Cobble (e.g. Co-C).	areas, e.g. coral cobble.		
Concrete ⁽²⁾	Cc	•	Rubble; rip-rap. ⁽²⁾	Artificial substrates/forms		
				should be described and		
				marked on segment maps.		
Wood	W	•	Debris/logs; pilings.	Debris can overlay other		
				substrates.		
Metal	Mt	•	Pilings, sheeting.	Usually artificial structures.		

1. If corals are live, the shoreline should be described as coral noting its biological character and substrate type.

2. The abbreviation "A" can be used to designate artificial structures when they are not otherwise easily described, e.g. A-B would describe artificial boulder shoreline (i.e. rip-rap).

Page 1 of 1	S.2

GUIDELINE FOR DETERMINING BEACH PROFILE (GRADIENT)

```
S.3
```

Rationale

Physical cleanup methods can alter the elevation or profile of sand, pebble or cobble beaches. This may lead to erosion of beach or back beach areas. Shoreline profile may need to be monitored during cleanup, particularly if heavy machinery is used.

Methodology

S.3A Use of Marker Stakes

This is the simplest method and is suitable for low energy shores where manual rather than mechanical cleanup is used. It detects changes in sediment distribution but does not allow an accurate profile of the beach to be determined.

1 Hammer wooden or steel stakes into the beach at a number of locations and at various tidal elevations.

S.3B Pole and Horizon Method 1

This method is suitable for all "soft" sediment shoreline types, i.e. those that allow a stake to be pushed or hammered into the surface. Fix stakes (the "back stakes") along the beach above the high tide mark (i.e. in 1 the Supratidal Zone). A linear transect is established across the beach (from supratidal zone to lower 2 intertidal zone). The orientation of this is identified using a compass bearing from each "back stake" position. To measure beach profile, a second stake (the "front" stake) is placed 2-4 m 3 along the transect, and a tape or pole is used to align the top of the back stake to the horizon, and the eye of an observer on the back stake. Alternatively a spirit level can be used to ensure that the pole is horizontal. The back stake is used to measure changes in sediment height; i.e. changes in 4 the distance between the tape level and the top of the stake (H in Figure S.3.2). This procedure can be repeated at regular intervals along the transect. 5

Page 1 of 3	S.3

S.3C Pole and Horizon Method 2

This is similar to Method 2.3B except that it does not require the front stake to be pushed into the surface.

- 1 Fix stakes (the "back stakes") along the beach above the high tide mark.
- 2 A linear transect is established across the beach (from supratidal zone to lower intertidal zone). The orientation of this is identified using a compass bearing from each "back stake" position.
- 3 To measure beach profile, a second stake (the "front" stake) is placed 2-4 m along the transect, and a tape or pole is used to align the <u>top</u> of the back stake to the horizon, and the eye of an observer on the back stake. Alternatively a spirit level can be used to ensure that the pole is horizontal.
- 4 The height between the sediment and the tape/pole at the front stake is measured (H1). The drop from the back stake to the front stake is H1-H0 (H0 is the height of the back stake, see Figure S.3.3)
- 5 This procedure is repeated at various intervals along the transect. Note if the "front stake" is left in place, measurements down-beach can be referenced from this point. This is an advantage if a pole (2-4 metres) is used to align stakes.

S.3	D Survey Using a "Theodolite"					
Thi	his is the most accurate method but requires specialised equipment.					
1	Fix stakes (the "back stakes") along the beach above the high tide mark (i.e. in					
-	the Supratidal Zone).					
2	The theodolite can be used to measure the orientation of the transect, the height					
	above the sediment of a forward measuring pole, and the height above the					
	sediment surface of the theodolite.					
3	When coupled with measured distances between the theodolite and the forward					
	pole, the beach profile can be drawn.					
	Graduated Pole					
	D = Distance along transect					
	Figure S.3.4					

Page 3 of 3 S	.3
---------------	----

4.3 Oil on Shorelines

The amount and distribution of oil on, and in, shorelines may need to be measured and monitored in order to determine:

- The most appropriate response strategies.
- The effectiveness of cleanup methods.
- The need for cleanup, e.g. to;
 - Predict the likely persistence of oil on the shore.
 - Measure rates of natural removal.
- When cleanup should be terminated, e.g. when;
 - A satisfactory level of cleaning is achieved.
 - When cleaning efforts are achieving no significant benefit.

The presence and distribution of oil on shorelines can be monitored through aerial surveillance, ground surveys or through remote sensing.

The amount of oil present can be estimated by visual observation or more accurately quantified through a combination of visual assessment of distribution together with sampling and chemical analysis. The combined visual-sampling approach is more accurate – provided that sampling has been done correctly – but this level of accuracy is not always needed for Type I monitoring. It is also slower in the provision of results.

This Section provides Guidelines for both visual monitoring of oil on shorelines and for the sampling of sediments and oil for chemical analysis. Chemical analysis methods are overviewed in Section 6.

4.3.1 Aerial Surveys

Aerial surveillance is the most rapid means of estimating the location of oil on shorelines, and the length and extent of the oily band. Locations can be accurately logged, and band widths and percentages of cover can be estimated (see Guideline S.4).

However, it is rare that an accurate indication of oil thickness can be obtained using this technique, and therefore it is very difficult to quantify the oil present. Although experienced observers can often make good estimates, ground surveys are usually still required to verify estimates.

GUIDELINE FOR AERIAL SURVEY OF SHORELINES

Rationale

A rapid means of estimating the location, length and extent of oiled shorelines. An accurate indication of oil thickness cannot be obtained using this technique. Ground surveys are usually still required. Note: A two person team is preferable for shoreline video/photo surveys.

Me	Methodology							
1	Select and commission aircraft. Aircraft should have:							
	1.1	Downward vi	sibility (helico	pter/fixed wing	aircraft with ov	ver-fusel	age wing).	
	1.2	2 Global (Geographic) Positioning System (GPS).						
	1.3	1.3 Slow speed, and						
	1.4 Be suitable for low altitude (preferably a helicopter)							
2	Asse	mble equipme	ent required:					
	2.1	Map or chart, suitable for marking up (preferably laminated).						
	2.2	Pens, pencils	s and eraser.					
	2.3	Camera(s) (c Note: Check	ligital/video ca	amera preferre I film.	d, with date red	cording c	apability).	
	2.4	Map of coast	line (topograp	hic map rather	than marine c	hart). Pi	referred	
		scale is 1:10,	,000 to 1:30,0			,		
	2.5	Reliable wate	ch (the aircraf	t will have a clo	ock).			
	2.6	Sunglasses.			•			
3	Obta	in information	on the predic	ted shoreline i	mpact area.			
4	Time	flight (if poss	ible) to corres	pond with low	tide.			
5	Discu	uss flight and	surveillance p	rogramme with	n the Pilot.			
6	Repo	ort departure time flight path and ETA to air control.						
7	Undertake a higher altitude (up to 500m) rapid fly over of the shoreline to gain						e to gain	
	an overall perspective of the extent of oiling. Use this to determine:							
	7.1	Length of sh	oreline to be	surveyed durin	g the current fl	ight.		
	7.2	Frequency ti	ming of photo	graphs (i.e. tin	ne of video or a	amount o	f film/	
	•	digital camera memory available).						
8	Conduct a low altitude survey of target shoreline. Use the following guidelines							
			Jae (the pilot			se):	100	
	Snoo	de (III)	30	<u> </u>	<u> </u>	>	, 100 Not	
	Spee	a (Khois)	20	30	UC	Pocor	not	
Helicopter recommended Recommended								
	Note: A new video tape or roll of film should be used for each new survey.							
g	Digital camera memory should be cleared and backed up after each survey.						urvey.	
	9.1	A Take video or still pictures at a downward angle of 30°-45° Noto: Upliko					e: Unlike	
	0.1	aerial survei	llance over wa	ater it is not alv	vavs possible t	o avoid	0. 011110	
		photographir	ng into the su	n. A polarising	filter may be u	ised to re	educe	
		glare, but us	e of this filter	should be reco	orded on the ph	otograph	n log.	
					I			
	Page 1 of 2 S.4							

9	9.2	Mark o	il distribution on map. Estimate and mark on:						
		9.2.1	Tidal position of oil (upper, middle or lower intertidal)	•					
		9.2.2	Band width (see Guideline S.5).						
		9.2.3	Percentage cover (see Guideline M.3).						
		9.2.4	Shoreline substrate.						
	9.3	Photo	Photo locations and direction should be marked on the coastal map						
		using a	using an arrow (direction) and number (sequence).						
	9.4	A voice	e-over should be used to record the details shown in 9	.2.1 to					
		9.2.4.	The voice-over should also record place names and/c	or GPS					
		referen	ices to aid in later verification of positions. Note: a direction	ect GPS-					
		camera	camera link may be possible with some digital cameras.						
	9.5	Comple	Completed video tapes and film should be labelled with:						
		9.5.1 Date and time							
		9.5.2 Location (GPS or geographic name) at which it was started and finished.							
11	Note:	Separat	Separate surveys should overlap shoreline lengths by a few hundred						
	metres	s or should include an obvious feature (building, headland, rock outcrop							
	etc.) a	t the start of the following survey.							
12	At the	end of each survey:							
	12.1	Review and copy videos, digital photos or have film developed (at least							
		two print sets).							
	12.2 Edit video tapes/digital video if necessary.								
	12.3	Label a	and catalogue videos/slides/photos.						
			Page 2 of 2	84					
			raye z ul z	3.4					

4.3.2 Ground Surveys

Ground surveys are usually required to verify aerial observations, and particularly to measure or estimate the thickness of oily bands, and describe the character of the oil. Ground surveys are also required to determine whether subsurface oil is present, usually from percolation of oil into interstitial spaces, or by burial by mobile sediments. Subsurface oil adds significantly to the cleanup efforts required and may also have significant implications for waste management. Guidelines for assessing surface oil and sub surface oil are presented in Guidelines S.5 and S.6 respectively.

Figure 4.3 Subsurface Oil (Photo: Wardrop Consulting)

4.3.3 Field Detection of Petroleum Hydrocarbons

The accuracy of visual assessments can be compromised by the presence of naturally occurring substances similar in appearance, behaviour, or odour to petroleum hydrocarbons. These include mineral sands, rotting vegetation, peats, mud, lichens, marine stains or bacterial films.

Guideline S.7 provides a simple but accurate method for differentiating between petroleum oils and naturally occurring oil-like substances. The method is based on the solubility of petroleum hydrocarbons in solvents and non-solubility of other pigments in naturally occurring materials.

GUIDELINE FOR ASSESSMENT OF OILED SHORELINES: SURFACE OIL

```
S.5
```

Rationale

Monitoring the extent and distribution of oil on shorelines is needed for planning shoreline response strategies, methods and cleanup. This procedure sets out the method for describing oil on shoreline Segments (Guideline S.1). The general <u>distribution</u> of oil over large lengths of shoreline is monitored by using modified aerial surveillance procedures (Guideline S.3).

Met	Methodology								
1	Divide	le shoreline into Sectors and Segments (see Guideline S.1)							
2	Record the following shoreline descriptors:								
	2.1	Length		In m	In metres				
	2.2	Width		In m	In metres, from high tide to low tide.				
	2.3	Gradien	t	In d	egrees; ap	oproximate	or as per	Guideline	S.3
	2.4	Energy		Hig	n, medium	or low as	suggested	d by form	
	2.5	Substrat	te	Muc	d, sand, pe	ebble etc. a	is per Gui	deline S.2	
	2.6	Form (o	r type)	Cliff	, platform	cobble bea	ach etc.		
3	For e oil.	ach Segn	nent, dra	aw a sk	tetch map	showing th	ie approxi	mate locat	ion of the
4	Reco	rd the foll	owing pa	aramet	ters for the	e oily band:			
	4.1	Length	In km f	or Sec	tors or tot	al, in m, for	· Segment	ts.	
			The dis	stance	the oily ba	and extend	s along th	e shoreline).
	4.2	Width	In meti	res. A	verage wid	of the o	ily band w	vithin a Seg	iment or
	4.0	0/	Sector	. Meas	sured acro	oss a beacr	n from higi		era of
	4.3 % Visual estimate of the percentage of the band (or average					age of			
		Cover	Danus	i. As p	el rigule	DEIUW,			
		20% 30% 40% 50% 60% 70% 80%						80%	
							K Y T		
	Figure S 5 1								
	44	Oil	Po	Pooler	toil Can b	ne estimate	d or mea	sured in m	m or cm
	7.7	Thick-	Cv	Cover	In mm. tl	his is meas	urable (>	1mm thick)
		ness	Ct	Coat.	Can be so	cratched of	f rock with	fingernail.	Ct will
			mask the colour and texture of und			e of under	lvina subst	rate.	
			St	Stain. Cannot be scratched off rock. Texture of					
				substra	ate is visib	le through	the oil		
			Fi/	Film (F	i) or Shee	en (Sh). Tra	ansparent	t. The cold	our and
			Sh	texture	e of substra	ate is visibl	e through	the oil	
5	If necessary, or requested, classify surface oiling as per Tables overpage.						ige.		
	I				Dogo 1	of 2			65
					гауе і				3.3

face Oil Cove	erage			
		Width of O	iled Band	
% Oil Cover	>6m	3-6m	0.5-3m	<0.5m
51-100	High	High	Medium	Low
11-50	Medium	Medium	Low	Very Low
1-10	Low	Low	Very Low	Very Low
<1	Very Low	Very Low	Very Low	Very Low
face Oil Cla	ssificatior		E	-
face Oil Cla	ssification	Surface C	Dil Coverage	
face Oil Cla Ave. Thickness	ssification High	Surface C Medium	bil Coverage Low	Very Lov
face Oil Cla Ave. Thickness Pooled/Thick	essification High Heavy	Surface C Medium Heavy	Dil Coverage Low	Very Low
face Oil Cla Ave. Thickness Pooled/Thick Cover (>1mm)	SSIFICATION High Heavy Heavy	Surface C Medium Heavy Heavy	vil Coverage Low Light Moderate	Very Lov Light
Ave. Thickness Pooled/Thick Cover (>1mm) Coat	Ssification High Heavy Heavy Heavy	Surface C Medium Heavy Heavy Moderate	Dil Coverage Low Light Moderate Light	Very Low Light Light Very Ligh

Figure S.5.2

(Source Wardrop 2000 as adapted from Owens & Sergy, 1994) Note: Use Band Width (W) and % Coverage (%) to determine the <u>surface oil cover</u>, and then use oil Thickness (T) to classify the degree of oiling; the Surface Oil Classification.

	Page	2	of	2
--	------	---	----	---

S.5

GUIDELINE FOR ASSESSMENT OF OILED SHORELINES: SUB-SURFACE OIL

S.6

Rationale

Monitoring the extent and depth of oil in shorelines is needed for planning shoreline response strategies, methods and cleanup. This procedure sets out the method for describing subsurface oil.

Met	hodo	logy					
1	Divide shoreline into Sectors and Segments (see Guideline S.1).						
2	Reco	rd the foll	owing sh	oreline descriptors:			
	2.1	Length		In metres.			
	2.2	Width		In metres, from high tide to low tide.			
	2.3	Gradien	t	In degrees; approximate or as per Guideline S.3.			
	2.4	Energy		High, medium or low as suggested by form.			
	2.5	Substrate		Mud, sand, pebble etc. as per Guideline S.2.			
	2.6	Form (or type)		Cliff, platform cobble beach etc.			
3	Dig tr	enches o	r pits to o	detect subsurface oil. Narrow trenches are more			
	suitat	ole for sar	ndy subs	trates. Pits are more suitable for cobbles or small			
	bould	er substra	ates. Th	e depth required will depend on substrate type and, for			
	sand	 pebbles 	s, on sec	liment mobility (wave energy).			
4	For e	ach Segn	nent, dra	w a sketch map showing the approximate location of			
	subsu	urface oil	detected				
5	If pos	sible, rec	ord the f	ollowing parameters for the oily band:			
	5.1	Length	In km t	or Sectors or total, in metres, for Segments.			
			I ne distance the oily band extends along the shoreline.				
	5.2	Width	In metr	es. Average width of the oily band within a Segment or			
	Nata		Sector.	. Measured across a beach from high to low elevations.			
	Note	percentag	Is difficult to estimate for subsurface oil. It can be				
	appro	approximated by digging a large number of pits through identified SUDSUITACE bands but this is usually not feasible					
6	Danus put this is usually not reasible.						
0			n	In metres or cm. The distance from the beach surface			
	0.1	denth of oil		to the top of the buried layer (see Figure S 6 1)			
	62	Maximum		In metres or cm. The distance from the heach surface			
	0.2	depth of oil		to the bottom of the oil laver			
	6.3	Substrate type		At various depths, or in the oily bands as required.			
7	Describe the oil in the o		il in the c	pilv laver:			
	7.1 Fluid Oil			Low viscosity, i.e. will flow relatively freely.			
	7.2	Viscous Oil		Oil will flow slowly.			
	7.3	Mousse/		Generally viscous but distinguishable from the above			
		Emulsifi	ed oil	by colour change (i.e. becomes lighter).			
	7.4	Tar		Very viscous, and sticky oil. Tar tends to hold its			
				shape when disturbed. Flows very slowly or not at all.			
	•	•					

Page 1 of 2	S.6

Page 2 of 2	S.6
	·

GUIDELINE FOR FIELD DETECTION OF PETROLEUM HYDROCARBONS

S.7

Rationale

A number of naturally occurring substances are similar in appearance, behaviour or odour to petroleum hydrocarbons and may be misreported as such. This method of identifying petroleum-oil is based on the solubility of petroleum hydrocarbons in solvents and non-solubility of other pigments in naturally occurring materials. The test provides a reliable indicator for the presence of petroleum oil but does not provide a measure of the amount or concentration of this.

Me	ethodology						
1	 Before leaving for the field, place 1-1.5 cm depth of hexane into a series of small test tubes. Stopper well, package and take into the field in a safe, waterproof container. Caution: Care should be taken in handling hexane or any other chemical. Consult the relevant Material Safety Data Sheet (MSDS). Hexane and other solvents should be carried on aircraft only with the pilot's approval. 						
2	Place a small amo 0.5-1 cm of hexand	unt of the "oil" or sediment into the test-tube or vial containing e.					
3	Place a stopper or	the tube and shake.					
4	Oil will dissolve in the nexane producing a brown colour (providing the oil is dark). Even small traces of most oils will produce a yellowish tinge to the otherwise clear hexane. Mineral sands and plant pigments will not dissolve and so will not discolour the hexane. The Table below lists some substances that may be mistaken for oil on, or in, shorelines:						
Black lichens These can look like a coating of asphalt or like old weathered oil "splatter".							
	Mineral sands	These can be particularly misleading for aerial surveillance personnel but can also be mistaken for light oil stain on close examination.					
	Rotting algae or seagrass	These can form very fine fibred "peats" and can smell very "sulphury" and oil-like. These may easily be mistaken for layers of buried oil.					
	Fungal growths	These "smuts" occur on mangrove leaves and, like lichens, can look very much like dry asphalt residues.					
5	Keep used test tub	bes for safe disposal on return to the Control Centre.					

Page 1 of 1	S.7

4.3.4 Sediment Sampling Methods

Calculating the mass balance of an oil spill may be of value in planning the overall response. For shorelines, rough estimates can be obtained by estimating the surface area of the oil (length of band x width of band x % cover) and multiplying it by the thickness. Estimates of oil thickness are unlikely to be accurate. For subsurface oil the method is inappropriate.

There are a number of simple methods for sampling sediments and the most appropriate method depends on the character of the sediments, the nature and distribution of the oil, and the analysis that is going to be undertaken (see Figure 4.4).

Figure 4.4 Determining Sediment Sampling Method

The simplest sampling methods involve "push cores" (Guidelines S.8.1 and S.8.2). These methods cannot be used if the relative amounts of oil at various depths are required, as surface oil will be pushed down into the sediment by the side of the tubes.
GUIDELINE FOR OBTAINING SEDIMENT SAMPLES

Rationale

Monitoring the extent and distribution of oil on shorelines is needed for planning shoreline response strategies, methods and cleanup. This procedure sets out the method for obtaining sediment samples.

Methodology

S.8.1 Push Core Sampling A

This method of sampling involves pushing a clean plastic tube down into the substrate and extracting a column, or "core" of sediment. It is suitable for most sediment conditions, but particularly when:

- Oil is present on the surface as a thin layer (coat, stain, film).
- Oil penetrated to a fairly shallow depth (e.g. < 10 cm).
- Accurate measures of the amount of oil at various depths are not needed
- 1 Push plastic tube into sediment. Generally the depth of sampling should not be more than two thirds of the length of the tube.
- 2 Seal the top of the tube and extract. A gentle gyration may be applied to facilitate this but avoid bending the tube.

3	If the sediment is wet or loose, or does not stick to the inside of the tube when extracted, it may be necessary to dig down beside the tube and block the bottom opening before removing the tube from the sediment. Alternately sealing the top of the tube with a bung can facilitate extraction of the core
	facilitate extraction of the core.
Δ	The core of sediment should be

4 The core of sediment should be transferred immediately to a clean glass container.

Equipment

The sampling tube can be constructed from a piece of PVC tubing. This should be split along its length so that it can be pulled apart and the core easily removed. The tube diameter should be about 5 cm (2"), giving a surface area of about 20 cm² and a core volume of 200 cm³ for a 10 cm deep sample. Tubes should be cut to at least 30 cm lengths.

Page 1 of 4

S.8

S.8.2 Push Core Sampling B This method is essentially the same as Method 1, but is used when it is necessary to differentiate between surface oil and subsurface oil. This may be needed if attempting to determine, for example: The amount of oil that could be removed by tidal action (i.e. surface oil) in low energy shores and oil likely to persist (i.e. subsurface oil). The rate of degradation of the oil. In this case the presence of relatively large • amounts of surface oil could mask any observation of changes in subsurface oil (or visa versa). Scrape surface oil from a given 1 **Cleaned Area** area prior to pushing in the sampling tube. Transfer this "surface sample" to 2 a clean storage jar and record the area cleaned (square centimetres) and approximate depth of sediment removed (if possible). 3 Proceed as per S.8.1. Figure S.8.2

Equipment

A clean wooden or stainless steel scraper will be required.

S.8.3 Sediment Block Extraction

This method of sampling is used when an accurate measure of the amount of oil at various depths is needed. It is useful only for firm, and preferably dry, sediments. The method can be modified for wet consolidated sediments but some hydrocarbons will be lost with water draining from the samples

*****	be lost with watch aranning norm the samples.
1	If fluid oil is present on the surface it should be removed by scraping the oil from
	a measured area of sediment. This area should be slightly more than a 30 cm x
	30 cm square.
2	With a flat spade, make a "U" shaped cut into the mud. The depth should be no
	more than 30cm (spade blade depth).
3	Place the spade in the bottom cut (base of the "U" shape) and lever up the block
	of sediment. Note a wedge may need to be cut below the base of the "U" and a
	pivot object used to facilitate the leverage.
4	The open edge of the "U" should break free. This is the uncontaminated edge
	of the core. Because this side has not been cut, no oil has been pushed along it
	from the surface, i.e. it is uncontaminated.

Page 2 of 4 **S.8**

Page 3 of 4	S.8

S.8	.4 Loose Sediment Extract	tion		
This whe use S7.3	 This method can be used in loose sediments such as gravel, pebbles or wet muds, where, if Method 2 is used, the core of sediment would likely collapse. It can also be used when or where the sediment particle size is too large for Method S7.1, S7.2 or S7.3. 1 A metal perimeter is pushed into the sediment (surface oil can be left or removed as per earlier methods). 			
2	 Sediment is then removed from inside the perimeter. This can be done as a composite sample, or layer by layer, depending on whether data from different depths are required. 			
3	The perimeter prevents the sides of the excavated pit from collapsing and contaminating lower sediment layers with upper sediments, and also limits the seepage of oily water or liquid oil from the upper layers of sediment.			
4	The size of the perimeter should be large enough to allow an adequate working area, but not require the removal of too much sediment.	Figure S.8.4		
	A 30 cm x 30 cm square should Suffice.			

Page 4 of 4	S.8

GUIDELINE FOR CALCULATING THE MASS OF OIL IN SHORELINES:

```
S.9
```

Rationale

Calculating the mass balance of an oil spill may be of value in planning the overall response. This method is used in cases when accuracy is required and where chemical analysis of samples has been obtained.

Met	thodol	ogy									
1	Deter	mine the c	oil distrib	ution	as per	Gui	deline	S.5:			
	1.1	1.1 Calculate area of oil band.									
	1.2	Estimate	the Percent	centa	ge Cov	eraç	ge (% (C) of	[:] the oil b	and.	
	1.3	Determin	e thickn	ess o	f oil lay	er (i	f possi	ble)			
	1.4	Determin	ie possik	ole de	pth of p	bene	etration	n/bur	ial of oil	in substrate	Э.
2	Decid	e on the s	ampling	meth	od to b	e us	sed (G	uide	line S.8).		
3	Deter	mine the c	lepth of	sedin	nent to	be s	ample	d.			
4	Samp	le sedime	nt to tha	t dep	th.						
5	Analy	se sedime	ent for oil	cont	ent. Th	nis w	/ill give	e the	concent	ration of oil	in mg/kg
	(PPM) sedimen	t. This is	gene	erally re	por	ted as	a pe	ercentage	e of dry sed	liment.
6	Deter	mine the c	lensity o	f the	sedime	nt (S	SG _{dry}).	Thi	s should	be calcula	ted for
	both v	vet and dr	y sedime	ent by	/ the lai	oora	itory ur	nder	taking th	e analysis.	I his will
-	also g	live the se	diment's	s wate	er conte	ent a	<u>is a pe</u>	rcen	tage (Se	d _{water}).	
1	Calcu	late the vo	blume (ir) CUDI	c meter	rs) c	of sedir	nent	in band	or Segmer	It Secomela
	samp	iea. This i akan (caa	Soction	5)	orrand	om	seaime	ento	ependin	g on now tr	ie sample
	wasia		_	5).	Δ		×	l	П	(all	in metres)
	c	v sed Sediment	-	Δrop	of Sam	nlin	a ^	Dor	oth of Oil	(an	in metres)
		Volume		/ 1100	or Oam	Pm	9	IS (S	ample)		
8	Calcu	late the dr	v weight	t of se	ediment	ŀ		(0	ampio)		
	Sed	iment =	= V _{sed}	x	SG dry	0	Veed	х	SG dry	x (100-9	Sed _{water})
	Dry V	Veight	- 300			r	- 300		e e ury	1	00
9	Calcu	late Mass	of oil in	samp	ling are	ea:					
		Oil	Mass =	Sedin	nent Dr	v W	eiaht x		М		
10	To calculate the Volume of oil, divide mass by the Specific Gravity of the oil (this										
	should be the SG of the residual oil not the original oil).										
·	-	t			_	_	<u> </u>		,		
					Pag	je 1	of 1				S.9

4.4 Environmental Effects

Shoreline biota may be included in Type 1 monitoring to determine the effects of cleanup. Ideally, this should involve a comparison of cleaned areas, oiled uncleaned areas, and unoiled areas.

4.4.1 Habitats

Offshore of the shoreline, monitoring may be divided into a number of broad habitat types, usually based on substrate type and exposure (energy), for example:

- Rock reefs (bedrock platform, boulder or mixed).
- Cobble beaches.
- Pebble beaches.
- Mixed pebble and sand beaches.
- Coarse sand beaches.
- Fine sand beaches.
- Mud or sand flats.

Considerable variation occurs in the biota associated with each. Mudflats, for example, may be without obvious surface plants or animals or be associated with dense algal or seagrass beds. Infauna may be abundant and diverse or relatively sparse.

The presence of birds, seals, crocodiles or nesting turtles will also greatly influence the nature of the monitoring programme.

Considerable flexibility is required in the design of biological monitoring of shorelines.

4.4.2 Target Fauna and Flora

This will reflect the particular sensitivities of the shoreline Segment. Species may be chosen on the basis of their perceived social, economic, cultural or ecological value, or because they are considered to be an "indicator" for wider community health.

4.4.3 Parameters

Recommended parameters are provided in Guidelines S.10 to S.14.

GUIDELINE FOR MONITORING DAMAGE TO INVERTEBRATE BEACH FAUNA

S.10

Rationale

Damage to coastal fauna and flora can occur as a result of oiling or response activities. Damage due to oiling plus response activities may need to be compared to the effects of oil alone to determine whether cleanup is having a net benefit or adverse effect. However, short-term effects should be evaluated against possible longer term benefits. The persistence of the oil and likelihood of longer-term effects of this need to be evaluated also.

Me	Methodology					
1	Deterr	nine monitoring loca	itions:			
	1.1	Species or commun	nities should be observed or collected	from both		
	affected (oiled) and unaffected (unoiled) control areas.					
	1.2	A number of affecte	ed and unaffected areas should be mo	onitored.		
2	Deterr	nine species to be n	nonitored or sampled.			
3	Deterr	nine parameter to m	easure and select appropriate methor	d (Table S.10.1).		
		Table S.	10.1 Parameters and Methods			
Parameter Method/Comment						
Nur	nber of	% cover of the	This can be done as an estimate	Ref:		
Org	anisms	sediment.	(similar to oil cover).	Guideline S.5		
			Photo documentation.	Section 5.3		
		Number of	Use quadrant frames.	Section 5.1		
		individuals per	Count or photo-documentation to	Section 5.3		
		m².	speed up field work.			
Pos	ition of	organisms	Record distance along a transect			
			or height on rock etc.			
Oil	Cover/	% of oiled	Use of quadrats or transects.	Section 5.1		
Imp	act on	organisms.				
Org	anisms	Percentage of	Suitable alternative to numbers of	Guideline S.5		
		area oiled.	oiled/unoiled organisms.			
Dar	nage to	% area of	Indicated by presence of			
"Sh	eet" e.g	. sheet that is	unattached individuals or holes in			
she	llfish,	covered by	the sheet, particularly mussels and			
bar	nacles,	dead animals/	oysters. Damage to the sheet can			
polychaetes bare "holes"		s bare "noles".	result in additional future damage			
			by wave action (Note below also).			
IVIO	tality	Number/mass/	Data from impacted sites needs to			
		area or dead	be checked against control			
		Organisms	(unimpacted of uniteated) areas.			
		Number/mass/	Seasonal monalities (die-ons)			
		organisms				
Λ	Deter	ning sample size oto	(refer to Section 2.5)			
-	4 Determine sample size etc. (refer to Section 2.5)					

Page 1 of 1

S.10

GUIDELINE FOR MONITORING DAMAGE TO COASTAL MARINE MAMMALS

S.11

Rationale

Damage to marine mammals can occur as a result of oiling or response activities such as aerial over-flights. Damage due to response activities alone should be compared with those of oil plus response activities (and oil alone if relevant) to determine whether response efforts are having a net benefit or adverse effect. However, short-term effects should be evaluated against possible longer term benefits. The persistence of the oil and likelihood of longer-term effects of this need to be evaluated also.

Met	Methodology						
1	Determine monitoring locations:						
	1.1	Fee	eding, haulout and bi	reeding areas should	be monitored whe	ther oil-	
		imp	acted or not.	-			
2	Deter	mine	species to be monit	ored or sampled.			
3	Obtai	n rele	evant expertise.				
4	Deter	mine	parameter to measu	ure and select approp	riate method (Tab	le S.11.1).	
			Table S.11.1	Parameters and Me	ethods		
		Par	ameter	Metho	od/ Comment		
Nun	nber of		Adult individuals.	Visual observation	Difficult to detern	nine.	
Indiv	viduals		Pups (if present).	from air or ground	Observations mu	st be	
				survey.	taken at sufficien	t distance	
Oil			Percentage of	Visual observation	to avoid disturbin	g	
Dist	ributior	ר	adults/pups oiled.	from air or ground	animals.		
(Imp	pact) or	า	Percentage of fur	survey.	Refer to Table in	Guideline	
Org	anisms	5	covered.	CAUTION. Do not	S.5.1		
				approach pups or			
				adults.			
			Position of oil on	Ground survey	See note above i	e	
			animals, e.g:		distance.	1	
			eyes, face, nose-		I his level of deta	li may be	
			mouth, peit,			e on non-	
			digostivo troct	Dathalam	Captive animals.	where the alk	
			uigestive tract.	Pathology	Dead animais. E	xpert task	
				veterinary	Live animais. Ex	pert task	
Dee	- : - -		Niveshan of dood	examination			
Possible			Number of dead	Nay be very	Low level of accu	iracy:	
Effects			adult seals.	difficult to	Deau animais ma	ay Sink Or	
			Number of dood	May ha yang	Difficult to diffore	ntioto	
				difficult to	botwoon oilod do	ad animal	
			pups.	determine	and dead oiled a	nimal	
						initiai.	
				Page 1 of 1		S.11	

GUIDELINE FOR MONITORING DAMAGE TO COASTAL BIRDS

```
S.12
```

Rationale

Damage to marine and coastal birds can occur as a result of oiling or response activities such as aerial over-flights or the onshore use of dispersants. Damage due to response activities alone should be compared with those of oil plus response activities and oil alone to determine whether response efforts are having a net benefit or adverse effect. However, short-term effects should be evaluated against possible longer term benefits. The persistence of the oil and likelihood of longer-term effects, particularly on breeding colonies, need to be evaluated also.

Methodology								
1	Determine monitoring locations:							
	1.1 All affected and unaffected areas should be monitored. Emphasis should							
	b	e on roosting, nesting	g and feeding areas.					
2	Determir	ne species to be mor	nitored or sampled.					
3	Obtain re	elevant expertise.						
4	Determin	e parameter to mea	sure and select approp	riate method (Table S.12.1).				
		Table S.12.	1 Parameters and Me	ethods				
	Pa	rameter	C	omment				
Num	nber of	Number of adult	Ground survey	Difficult to determine.				
Indiv	viduals	individuals.	Aerial survey	Observations must be				
		Presence of	Ground survey	taken at sufficient distance				
		hesis/ hesiing	Aerial survey	Identify hird species if				
		bilds.	(approximation only)	possible.				
Тур	e Present	Group or	Ground survey	Waders/diving				
		species.	Aerial survey	birds/penguins.				
Oil		Percentage of	Visual observation	Identify bird species if				
Dist	ribution	adults/nests/	from air or ground	possible.				
(Imp	pact) on	chicks oiled.	survey.					
Bird	S	Percentage of	CAUTION. Do not	Refer to Table in Guideline				
		body covered.	approach nests or	S.5.1				
Other			Cround ourwow					
Other		birde	Observation of	slowed movement/ cap or				
FUSSIBLE		birus.	captive birds	cannot evade humans				
Linooto		Number of	Ground survey	Identify bird species if				
		dead.		possible.				
		Cause of death	Pathology	Dead animals. Expert task				
			Veterinary	Live animals. Expert task				
			examination					

Page 1 of 1	S.12
•	•

GUIDELINE FOR MONITORING DAMAGE TO COASTAL MARINE REPTILES

Rationale

Damage to marine and coastal reptiles (turtles, crocodiles) can occur as a result of oiling or response activities such as vessel activity, the use of dispersants or mechanical cleanup of nesting shorelines. Damage due to response activities alone should be compared with those of oil plus response activities and oil alone to determine whether response efforts are having a net benefit or adverse effect.

Met	Methodology							
1	Determine monitoring locations:							
	1.1 All affected and unaffected areas should be monitored. Emphasis should							
	be on nesting and feeding areas.							
2	Determine	species to be mor	nitored or sampled.					
3	Obtain rele	evant expertise.						
4	Determine	parameter and sel	lect appropriate method	d (Table S.13.1).				
		Table S.13.	1 Parameters and Me	ethods				
	Para	ameter	C	omment				
Num	nber of	Number of adult	Ground survey	Crocodile numbers difficult				
Indiv	/iduals	individuals.	Aerial survey	to determine due to habitat				
		Presence of	Ground survey	and behaviour.				
		nests/ nesting	CAUTION! Team	Numbers more likely to be				
		animals.	should not be in	identified by tracks; expert				
			crocodile areas	task.				
			unless accompanied					
		_	by Wildlife Officer					
Spe	cies	Crocodiles	Ground survey					
Pres	sent	Turtle species.	Aerial survey					
Oil		Percentage of	Visual observation	Identify turtle species if				
Dist	ribution	adults/nests/	from air or ground	possible.				
(Imp	pact) on	young oiled.	survey. CAUTION.					
Orga	anisms		Do not approach.					
		Distribution of	Eyes, mouth-	Refer to Table in Guideline				
		oil on affected	nostrils, body.	S.5.1				
Man	(- 1) (Individuals.	One was all as we want					
IVIO	tality	individuala	Ground survey	Identify species if possible.				
Oth	~ #	Individuals.	Dethelem	Experi lask				
Othe	er	Cause of death		Dead animals. Expert task				
			velerinary	Live animals. Expert lask				
		Sublatbal/	Ground curvey	Fooding (swimming /no				
			Observation of	reeding /Swimming /no				
				/cap or cappot ovado				
		of oiled animals	captive animals.	humans /andressiveness				
			I	numans /aygressiveriess.				

Page 1 of 1

S.13

GUIDELINE FOR MONITORING DAMAGE TO COASTAL FLORA

```
S.14
```

Rationale

Damage to coastal flora can occur as a result of oiling or response activities. Damage due to oiling plus response activities may need to be compared to the effects of oil alone to determine whether cleanup is having a net benefit or adverse effect. However, short-term effects should be evaluated against possible longer-term benefits. The persistence of the oil and likelihood of longer-term effects of this need to be evaluated also.

Me	thodo	log	у			
1	Deter	mine	monitoring locatio	ns:		
	1.1	Spe	ecies or communiti	es s	hould be observed o	or collected from both
	1.0	affe	ected (oiled) and un	hatte	ected (unoiled) contro	01 areas.
_	1.2 Deter	An	umber of affected	and	unaffected areas sh	ouid be monitored.
2	Deter	mine	species to be mor	nitor	ed or sampled.	
3	Deter	mine	parameter to mea	sure	e and select appropr	late method (Table S.14.1).
		Dore	Table 5.14.	1 P	arameters and Met	nods
		Para	ameter	_		
Nun	nber or	,	% cover of the	Gr	ound survey	Refer to Table in
Abu	ndance	e of	sediment.	-		Guideline S.5
Plar	nts			Ae	rial survey	Large areas only
			Numbers	Gr	ound survey using	Section 5.1.
			(1)	quadrats or transects		May occur in days/weeks.
			Biomass ⁽¹⁾ :	Gr	ound survey	Intrusive. Detailed study
			Mass of plants			based on sampling in
L F			per m ²	_		affected and control sites.
Dist	ributior	n of	Tidal zone/	Gr	ound survey using:	Distance along transect.
Plar	nts or		elevation.		Transects	Section 5.1
Dan	nage				Beach gradient	Guideline S.3
Dist	ributior	n of	% of plant area	Gr	ound survey	Suitable for algaes and
Oil	on Plan	t	oiled.			seagrasses. Refer to
Mat						Table in Guideline S.5.
Dist	ributior	n of	Maximum and	Gr	ound survey	Suitable for macrophytes
Oil	on Plan	t	minimum height			such as mangroves, tea-
			of oil.	_		trees and offshore kelps
			% cover of	Ground survey		(kelp depth may be used
			whole plant			rather than height).
			% cover of	Gr	ound survey	Refer to Table in
			foliage			Guideline S.5.
			Position on	Gr	ound survey	Roots/ leaves/ trunk.
			plant			
(1) L	Jnlikelv	' to b	e required as Type	e I m	onitorina	

Уŀ

Page 1 of 2

S.14

Table S 14 1 Continued Parameters and Methods				
Mortality ⁽²⁾	Number or area of dead plants	Ground surveys using quadrats or transects	Section 5.1	
	Area or % loss	Aerial survey	Refer to table in S.5	
Other Possible	Chlorosis (bleaching).	Ground survey	Leaves or fronds go yellow, lose colour.	
Effects ⁽¹⁾	Black/curled leaves (dead).	Ground survey	Sometimes called "burning".	
	Leaf/frond loss	Ground survey	May occur within days, weeks or even months in the case of mangroves.	
	Loss of plants.	Ground survey	May occur within days/weeks.	
	Changes in level of fungal or insect damage	Ground survey	May occur within weeks/months ⁽¹⁾ .	

(1) Unlikely to be required as Type I monitoring
(2) Note: Death may be difficult to establish in some plants (e.g. mangroves). Generally a sub lethal parameter such as leaf loss is used.

Page 2 of 2	S.14

Figure 4.5 Mangroves Showing Brown (Dead) Leaves. Note these leaves may persist on the tree for months, particularly if coated with oil (Photo: Wardrop Consulting)

Figure 4.6 Oiled Mangroves.

Tree height, height of canopy above sediment, maximum and minimum height of oiling and percentage oil cover within the oily band should be recorded (Photo: Wardrop Consulting).

5.0 GENERAL METHODS

5.1 Field Sampling Methods

5.1.1 Selecting the Sampling Location

The basic aim of a sampling design is to ensure field samples are representative of the area, habitat or community being investigated, and are collected efficiently and cost effectively. There are three basic approaches relevant to selecting sample locations:

- Authoritative or Selective Sampling. This sampling is deliberately biased to specific areas, e.g. visibly oil-free and oil-impacted sites. It is ideal for Type I monitoring as it allows a smaller number of samples to be collected from the areas of most interest. However, it has a relatively high potential for error if variability is unknown.
- Random Sampling. This is a more scientifically valid method but usually requires a large number of sample locations. For monitoring that may be legally challenged, or scientifically scrutinised, this method is recommended. (This is unusual for Type I monitoring though).
- Systematic Sampling: This sampling area uses a grid or consistent pattern across the defined area. This approach

Figure 5.2	Random	Quadrats
------------	--------	----------

is most suitable when looking for non-obvious contaminated locations, such as subsurface oil.

Monitoring sites are usually segregated within defined strata such as substrate type (cobble beaches, rocky shores), tidal elevation, or zones of biological importance (e.g. seagrass beds). This "stratification" minimises non-spill related variance and allows sites to be directly compared where the key difference is the impact of the spill or clean up method used, not pre-existing differences like tidal elevation.

5.1.2 Use of Quadrats and Transects

If the parameter being measured is based on area (e.g. animals per m²), small sampling perimeters or "quadrats" can be used (e.g. Figures 5.1 and 5.2). Quadrat size will depend on what is being sampled and the numbers to be counted. With large quadrats numbers can become unwieldy, if they are too small, sampling variability problems may arise. Generally, for shoreline work, an area of 0.2-0.3 m² is sufficient (e.g. a $0.25m^2$ area would be a 50cm x 50cm square quadrat or a circlular qaudrat with a diameter of about 56.4cm).

Figure 5.3 Counting Intertidal Epifauna within a Quadrat. Note: Counting of infauna may require substrate removal (Guideline S.8) (Photo: Cawthron Institute)

The number of quadrats used will be determined by the method of selecting the sample locations (Section 5.1.1), and for the need for statistical strength.

Transects are surveyed lines, usually passing from high to low tide, along which samples are taken. Like quadrats, transects can be positioned selectively, randomly or at regular intervals.

Sampling points or quadrats can be distributed along the transect continuously, selectively, randomly, or at regular intervals. In the last case this would effectively be the same as a grid pattern.

Figure 5.4 Transects

5.2 Sample Handling

Samples must be handled in such a way as to ensure that they remain uncontaminated, unspoiled by decomposition, breakdown or separation (e.g. due to heat or freezing).

Samples should be clearly labelled and, if necessary secured from potential loss or tampering. Guideline G.1 provides instructions for sample handling.

5.3 Photo-documentation

Photographic documentation can range from video or photo-surveys of coastlines or slicks at sea to detailed photographs of quadrats, transects, or individual impacted plant and wildlife. Photo documentation has the advantages that skilled interpretation of data can be done later, remotely and be consistently interpreted. This overcomes problems of shortage of skilled staff and the need to calibrate estimates by different field staff. More accurate calculations of percentage cover and numbers may also be possible.

5.3.1 Use of Photographs and Photo-quadrats

A photo-quadrat consists of a camera and frame designed to take a photo of a small quadrat area (Figure 5.5). Photo-quadrats are often used for subtidal studies where time constraints placed on divers do not allow for in situ sampling.

Photographs should be of sufficient scale to allow the later quantification of:

- Numbers of plants or animals (e.g number of barnacles in the quadrat).
- Area covered by plants or animals (e.g mussels); usually measured as a percentage.
- Identification of genus or species (or whatever level of taxonomic resolution is required).

Figure 5.5 Frame for Photo-documentation of Quadrats (Photo: Cawthron Institute) Note: Example has lights for seafloor use, these may not be needed for shorelines.

Each photograph should include an object to provide a measure of scale. In the case of a photo-quadrat this would be provided by the perimeter of the quadrat.

5.3.2 Photo-transects or Video-transects

Photo-transects comprise a series of continuous or regularly spaced photographs (usually quadrats) along a transect.

Video-transects are simply videotapes of the biota, substrate or oil along a transect. Care must be taken to maintain a constant height or provide a scale along the entire length of the transect.

GUIDELINE FOR HANDLING OF SAMPLES

Rationale

Samples must be handled, stored and transported with care so that they remain uncontaminated, intact and fit for purpose. Handling procedures should also be documented such that sample integrity can be demonstrated.

Me	thodo	logy				
1	Sample containers: Samples should be stored in containers that will not leak,					
	break o	break or leach chemicals into the sample. Direct contact between the sample				
	and pla	astic should b	e avoided. Suitable	containers are listed in the Table below.		
	5	sample	Container	Conditions/other		
	Oil		Glass bottles.	Clean.		
	Water		500 ml.	Coloured (dark) glass is preferred for		
	Sedime	ent	Glass jars	water samples.		
	(fine: s	ilts-pebbles)	250 ml.	Preferably supplied by laboratory.		
				Top should be sealed with aluminium		
				foil under the cap.		
	Sedime	ent	Wrapped in	Once wrapped they can be stored in		
	(coarse	e: cobbles)	aluminium foil	plastic bags.		
	Biological samples		Glass jars	See above		
			Wrapped in	Whole specimens. Once wrapped they		
			aluminium foil	can be stored in plastic bags.		
-						
2	Contai	ners should b	e filled as full as pos	ssible to exclude air and avoid		
	evapor	ative losses of	of light hydrocarbons	S		
3	Sample	<u>e labelling: A</u>	Il samples should be	e labelled immediately.		
	3.1	The informa	tion that is recorded	on each will depend on the nature of		
		the sample, but should include that indicated in the example label below.				
	3.2	Labels should <u>not</u> be placed inside the sample container.				
	3.3	Labels shou	ld be applied to con	tainers <u>after</u> the sample has been		
		sealed. This	s will allow the conta	iner's exterior to be cleaned and dried		
		before the la	abel is attached.			
•	•	•				

Sample number	
Sample description	
Time	
Date	
Location	
Name of sample taker	
Witness	

Page 1 of 3	G.1

G.1 Methodology Continued

4 Sample Log: A list of all samples taken should be completed and used to:

4.1 Check that no samples have been lost.

4.2 Check labels against the log for errors or omissions.

An example of a row from a Sample Log is provided below.

Date/	Sample	Location ⁽¹⁾	Additional	
Time	No		Notes	
			Sample description ⁽²⁾	
			Sample type ⁽³⁾	
			Name of sample taker	
			Witness	
			Weather	
			Sea state	
			Additional notes ⁽⁴⁾	

(1) Name of location, location number and/or coordinates.

(2) Sediment type (sand, mud, pebble), colour, texture,

(3) Biological (shellfish, marine worms, seagrass, algae), visible oil, length of core.

(4) Sample leakage or loss during collection, sample disturbance.

5	Field preservation: Most samples can be preserved in the field by chilling to approximately 4 ^o C using insulated containers and freezer blocks. Subsequently, samples should be preserved as follows:				
	Sample Type Preservation Method				
	Sediment	Chilled to $<4^{\circ}C$ – but not frozen.			
	Oil	Chilled to <4°C – but not frozen.			
	Soft marine fauna	10% formalin ⁽¹⁾ in seawater			
	Fish	(or freshwater if sample is from freshwater).			
		Freezing (preferred method for large fish and crustaceans			
	Crustaceans	e.g. > 10cm long)			
<u> </u>	Comple handlings A				
ю	Sample nandling: P	all areas where samples are handled or stored must be:			
	6.1 Decontamin	ated before and after use (see Guideline G.2).			
	6.2 Designated	"No Smoking" areas.			
	6.3 Isolated fror	n combustion engines, exhausts or other sources of			
	hydrocarbon contamination.				
7	Sample security: If necessary, attach a "custody seal" to the sample container				
	and/or storage container. This is generally a piece of tape, or plastic lock, which				
	will be broken if the container is opened. If these are unavailable then a locked				
	container should be used (see also "chain of custody" in "9" below).				
(1)	Care should be taken when using formalin or any other chemical. Consult the				
. ,	relevant Material Safety data sheet (MSDS)				

Page 2 of 3	G.1

G.1	Method	lology (Continued			
8	Sample	e storage:				
	8.1	If samples are to be held overnight, or for any extended time, they				
		should	be held in a secure room, within a suitable container (e.g.			
		refrige	rator), and in suitable conditions.			
	8.2	If a Sa	mple Room is established:			
		8.2.1	A Sample Room Controller should be appointed. This person			
			will ensure control and storage of samples.			
	The room should be locked with only nominated persons					
	having access.					
		8.2.3	A log should be kept of all samples brought in and taken out			
		(sample no, person, date, time etc.).				
9	Sample	le transport:				
	9.1	Sampl	es should be transported to the laboratory or other destination			
		within the identified "holding time" for the sample.				
	9.2	Sample containers should have a "Chain of Custody" record attached.				
		This is	used to track the location and handling of samples, particularly			
		those t	hat may be used for evidence. An example "Chain of Custody"			
		Form is	s shown below.			

Chain of Custody (Front)

Person		Name			Date of	
Responsi	ble				Receipt	
for Samp	le	Contact			Time of	
Dispatch					Receipt	
Sample		Relinquis	hed by Relinquis		shed to	Reason for
No		Name	Time/Date	Name	Time/Date	Transfer

Chain of Custody (Back)

To (Sample Destination):		From (Sample	Origin):
Sample No	Descriptio	n	Other Notes
	Descriptio	11	Other Notes

Continued...

Page 3 of 3	G.1

GUIDELINE FOR DECONTAMINATION OF EQUIPMENT

Rationale

All samples should be kept free of cross contamination. It is sometimes necessary to reuse equipment and so this must be thoroughly cleaned between each use.

Me	thodo	ology
1	Meta	and some plastic items may be decontaminated after use and reused.
	Wood	den items should be used once and then disposed of.
2	As a	general rule, decontamination of equipment in the field is difficult. If field
	decor	ntamination is necessary instruments should be:
3	3.1	Washed or wiped free of obvious contamination (sediment, oil).
	3.2	Rinsed thoroughly with methylene chloride.
	3.3	Rinsed with acetone (or hexane).
	3.4	Rinsed thoroughly with de-ionized water (if instruments must be dry for
		use and cannot be air dried, alcohol may be used for this final rinse).
	3.5	Store all used solvents in a secure, labelled container.
	Note:	Plastic gloves should be worn by all persons undertaking
	<u>deco</u>	ntamination procedures.
4	At ba	se:
	4.1	Wash all equipment with warm water and detergent.
	4.2	Rinse thoroughly with de-ionised water
	4.3	Rinse with solvent (preferably the same solvent that is used by the
		laboratory for extracting hydrocarbons from samples).
	4.4	Wrap in solvent washed aluminium foil.
5	The la	aboratory should be advised of any decontamination procedure used on
	samp	ling instruments.

Page 1 of 1

G.2

5.4 Laboratory Methods 1: Chemical Analysis

Methods for the chemical analysis of oil, oil in water or oiled sediments, or other laboratory procedures are specialised tasks beyond the level of knowledge required for the design and execution of Type I monitoring.

However, monitoring personnel should have a general knowledge of the types of analysis and testing available, and should understand exactly what information the various analytical methods can provide <u>before</u> taking samples and sending them for analysis.

Guideline G.3 provides some guidelines for the type of analytical tests needed to fulfil a number of objectives or information needs.

5.5 Laboratory Methods 2: Toxicological Tests

Toxicity data may be used when assessing the potential impact of a spill, or spill response products, but toxicity testing is extremely unlikely to be required for Type I monitoring.

Toxicity data report the effect of a substance on a particular organism under defined test conditions. Test conditions in most cases are significantly different to those likely to be encountered outside of the laboratory, and often provide very little indication of the environmental effect that a substance will have under spill conditions.

In particular, field exposure periods are generally much shorter, and concentrations dilute much faster, than those used in the laboratory.

Before commissioning or applying toxicity data it is very important to consider its relevance and applicability.

GUIDELINE FOR CHEMICAL ANALYSIS OF SAMPLES

G.3

Rationale

To provide monitoring personnel with a general overview of the types of analysis and testing available.

Methodology		
Data Need	Analytical Test	Comment
Amount of oil in the sediment	For all oils: "Total Petroleum Hydrocarbons (TPH)".	Results are in mg/kg or ppm (dry weight). Note see
	For heavy oils and longer term study of medium to heavy oils, do "Total Oil and Grease (TOG)" in addition to TPH.	Guideline C.9 for calculation methods. ⁽¹⁾
Oil Physical	Viscosity.	Centistokes (cSt). ⁽²⁾
Character	Pour Point.	Degrees Celsius (°C).
	Density (Specific Gravity).	
	Water Content.	As a percentage.
Predicting Oil	Physical Properties.	See above.
Behaviour	Wax Content.	As a percentage.
	Asphaltene Content.	As a percentage.
Fingerprinting (Identifying the Oil)	Biomarkers	EUROCRUDE/ NORTEST GC-MS protocols a recommended
	Metals (Vanadium, Zinc, Nickel Cadmium, Lead) and Sulphur.	Usually Vanadium, Nickel, with Sulphur.
Weathering	C17/Prystane & C18/Phytane ratios.	
Tainting	Hydrocarbons in edible tissue or whole animal/plant	
Bioaccumulation	Hydrocarbons in whole animal/plant	

(1) Remember to take "control" sediment samples. Also remember to request wetsediment and dry-sediment densities (i.e. % moisture). This will be needed to accurately calculate oil content of the wet "in situ" sediment; i.e. what volume of beach is represented by 1 kg of dry sediment?

(2) For waxy oils or oils with pour points close to ambient air or sea temperatures (i.e. within 5-10°C) it is best to measure viscosity at a number of temperatures around the ambient temperature. This will assist in the prediction of changes in oil character.

		Page 1 of 1	G.3
--	--	-------------	-----

6.0 SAFE FIELD OPERATIONS

Monitoring supervisors must ensure that all personnel receive suitable health and safety inductions, including field training. Inductions should be undertaken by a qualified person before personnel proceed to the monitoring site. Monitoring personnel must ensure that they do not undertake tasks that they are not appropriately trained or briefed for. Safe operations requires:

- All team members to be briefed on operating procedures and receive suitable on site training.
- All teams be provided with;
 - Protective clothing.
 - Catering facilities.
 - Decontamination/washing facilities.
 - Material safety data Sheets (MSDS) for spilt oil or chemical and for any chemicals. Used during cleanup or monitoring programmes.
- Any identified breach of safety procedures to be immediately rectified.
- All injuries, and incidents that could result in injuries, be reported.
- Members of the public that approach or enter the site, to be advised of any hazards.

6.1 Identifying Site Hazards

Specific hazards will need to be identified and included in on-site induction training. General, or site-specific, safety guidelines may need to be prepared. An example is provided below.

	Example Safety Procedure: Helicopter Landing Zone
	Task/Requirement
1	Landing sites should be on a flat, preferably elevated portion of the beach and
	be cleany visible from all directions.
2	The site should be cleared of debris.
3	The site should be clear of obstructions such as trees and not be close to more
	elevated land.
4	When the helicopter is about to land all personnel should be moved away from
	the site and directed to avert their eyes (flying debris)
5	The helicopter is never to be left unattended. The Pilot is responsible for
	enforcing an exclusion zone around the aircraft. The size of this is discretionary
	but should be a minimum of 15m.
6	When approaching the helicopter do so from the front and only under the
	direction of the Pilot. Never approach from the rear.

GUIDELINE FOR IDENTIFICATION OF SITE HAZARDS

Rationale

Each monitoring site should be assessed for hazards before teams are allowed to proceed onto it. A site may have already been assessed by incident management teams but monitoring teams may be the first on site, or be working on unvisited sites.

Ме	eth	odolo	ogy	
1	Before departing for a site, consult with the nominated Site Safety Officer and			
	determine whether a site safety assessment has been undertaken or if there are			
_	any known hazards.			
2	R		work pla	ans for the site (e.g cleanup activities, presence of heavy
2			, nelicop	oter use etc.) and identify operational nazards.
3			ommun	cations and emergency procedures.
4		nazaro	as are io	ientified, implement suitable management strategies.
5		n site,		ore entering a site, survey the site (e.g. from an elevated
	р р	lans.) and loe	entity potential site nazards (see Checklist below). Review work
6	S	ummai	rise haza	ards to team and go over management procedures.
7	С	heck c	ommuni	cations links.
		Che	cklist fo	or Site Hazard Identification Assessment and Control
A Hazards associated with the pollutant.		pciated with the pollutant.		
		A.1	Preser	nce of volatile oils or other chemicals (inhalation).
		A.2	Preser	nce of oil or toxic chemicals.
			A.2.1	Ingestion.
			A.2.2	Skin contact (dermatitis or chemical irritation).
		A.3	Check	product Material Safety Data Sheet (MSDS).
В		Haza	rds asso	ciated with the physical environment.
		B.1	Slips, t	rips and falls (assess site and access route).
		B.2	Tides (check tide levels, times and access).
		B.3	Curren	its, rips and eddies.
		B.4	Waves	;
		B.5	Deep v	vater (risk of drowning).
		B.6	Reefs	and marine hazards.
		B.7	Weath	er:
			B.6.1	Storms.
			B.6.2	Heat (heat exhaustion/heat stroke) or cold (hypothermia).
			B.6.3	Exposure (sunburn/frostbite).
			B.6.4	Strong winds/cyclones.
		B.8	Slippe	ry or loose surfaces.
		B.9	Cliffs.	
		B.10	Mudfla	ts (deep unconsolidated muds).

HS.1

HS.1	Metho	ology Continued		
С	Haza	ards associated with the biological environment.		
	C.1	2.1 Inappropriate handling of oiled birds or other animals (particularly ex		
	injuries).			
	C.2	Presence of potentially aggressive/harmful wildlife.		
		C.2.1 Crocodiles, Seals, Sea Lions.		
D	Haza	s associated with the cleanup.		
	D.1	njuries from machinery:		
		D.1.1 Burns/scalds		
		D.1.2 Entanglement.		
		D.1.3 Crushed or broken limbs, hands.		
		D.1.4 Noise.		
D.2 Presence of vehicles (collisions and motor vehicle accidents				
D.3 Presence of buoys, booms, anchor cables.				
	D.4	Handling, storage and use of potentially harmful chemicals and		
		cleaning agents.		
	D.5	Jse of MSDS.		
	D.6	-landling and storage of fuels and lubricants.		
	D.7	Vlanual handling/lifting (back / lifting injuries).		
E	Haza	s associated with response personnel.		
	E.1	Conditions arising from alcohol and / or drug use.		
	E.2	Conditions arising from existing (known or unknown) medical		
		conditions:		
		E.2.1 Heart attacks.		
		E.2.2 Epileptic seizure.		
		E.2.3 Hypoglycaemic (or hyperglycaemic) episodes (diabetes).		
		E.2.4 Asthma attack.		
		E.2.5 Other.		

Page 2 of 2	HS.1

6.2 Personnel Tracking

It is essential that the movements and whereabouts of monitoring teams and personnel are tracked throughout the response. This responsibility may rest with the Operations Officer, Logistics Officer or other Incident Management Team officer, depending on how functions are assigned for each incident response.

However, the person in charge of the monitoring programme must ensure that monitoring personnel are being tracked and that adequate support is provided, particularly if they are to be deployed into areas with poor communications (see section 6.4) or with limited access.

Personnel tracking guidelines are provided as part of Guideline HS.2.

6.3 Identifying Chemical Hazards

The oil or chemical that has been spilled may present a hazard. A Materials Safety Data Sheet (MSDS) should be available for the product and this should be supplied to monitoring personnel by the Incident Safety Officer, Health and Safety Coordinator or some other nominated Incident Management Team member.

The person in charge of monitoring must ensure that the relevant MSDS is obtained, distributed and explained to field teams.

6.4 Monitoring Air Quality: Volatiles

Some oils and chemicals can constitute respiratory hazards. If this is indicated, each work site must be tested, and assessed as safe, by a qualified individual. Relevant health and safety and workplace regulations should be consulted.

6.5 Communications

Monitoring teams may need to deploy to remote areas with poor communications. If this occurs, the person in charge of the monitoring programme must ensure that adequate communications equipment is supplied or that alternative arrangements are put in place (see Guideline HS.2).

GUIDELINE FOR DEPLOYMENT INTO REMOTE AREAS

Rationale

Monitoring teams may need to deploy into areas where there is little or no field support and where communications may be limited. It is important that safety procedures are established and followed.

Ме	thod	blogy	
1	Determine personnel and monitoring equipment needs (refer to relevant		
	guidelines)		
2	Assess logistics resources needs:		
	2.1 Accommodation.		
	2.2	Transport for personnel.	
	2.3 Catering and water supply.		
	2.4 Decontamination/washing facilities.		
	2.5	Toilets.	
	2.6	Field support (shade/rest areas).	
	2.7	Other support.	
	2.8	Fuel.	
	2.9	Equipment storage area or facility.	
	2.10	On site maintenance.	
	2.11	Waste storage areas.	
	2.12	Other.	
3	Assess existing access. If necessary request deployment of an assessment team to		
	invest	gate:	
	3.1	Road condition (including river crossings).	
	3.2	Ferry/barge services.	
	3.3	Boat ramps.	
	3.4 Airstrips.		
	3.5	Indigenous title or cultural sites (are permits required?).	
	3.6	Vegetation/habitats of significance.	
	3.7	Hazards.	
4	If need	ded, develop a deployment plan and submit to the relevant Operations Officer or	
-	Incident Controller.		
5	Asses	s communications.	
	5.1	Ensure that teams are equipped with suitable equipment in working order.	
	5.2	If communications is not possible via telephones or radios, arrange regular over-	
		flights to verify that teams are safe.	
6	Subm	it a travel plan each day to the Incident management team delegated person	
7	Before	e departing, report departure, time, destination and ETA to the delegated person.	
8	Repor	t arrival at each site, and departures and destinations to the delegated person.	
9	Repor	t arrival back at base at the end of the day.	
-		·	

Page 1 of 1	HS.2

Figure 6.1 Environmental Hazards

Note: Hazards may be obvious or even sign-posted, in other cases hazards may be less obvious. Experienced local advice should always be sought. (Photo: Wardrop Consulting)

7.0 DATA CONTROL AND MANAGEMENT

Data may be obtained in a number of different formats:

- Forms.
- Photographs (digital or film).
- Video (digital or tape).
- Maps.
- Notebooks and logs.
- Portable GPS/GIS units.
- Verbal transmission.
- Laboratory reports.
- Samples (biological, sediment or oil).

Whatever the format, it is essential that data are quickly and effectively stored and transmitted, and that the accuracy of the collected data, and of any consequent analysis, is optimised.

7.1 Data Transfer and Storage

All data should be backed up as soon as possible. This applies to data as it is acquired in the field, as it is transmitted, as well as when it is compiled and stored. Reliance on a single copy of data, whether on paper or digitally recorded, must be avoided.

Digital recording of data has the advantage that, in some areas, it can be transmitted immediately to the Incident Control Centre for instant use. This also provides an immediate backup, if receipt is confirmed. However, such transmission may be either unreliable or unavailable in many regions.

Regardless of field methodology, central digital storage of data is recommended for ease of transport, access and data analysis.

7.2 Security and Data Control

Some information collected by monitoring teams can be misinterpreted or misused. Central control of the assessment and dissemination of information is usual in spill response. Type I monitoring programmes should be compliant with these requirements.

Type II monitoring programmes may be managed outside of the response organisation and be less constrained by time and resources.

7.3 Data Quality

Procedures should be established to ensure that data errors are minimised, detected and corrected. Methods for minimising errors are included in Table 7.1. For large-scale monitoring programmes, a formal Data Management Plan may be required. A checklist for the design of this is provided in Guideline Q.1.

	False Positives
Definition	Management
A false positive occurs when you make the decision that a substance, parameter or effect is present when, in fact, it is not present. Also known as Type I errors and "false rejection decision errors"	 The use of "analytical blanks" and "field blanks". These are samples that are known to not contain the target substance, parameter or effect. If it is found in a blank then you know that a false positive conclusion is possible. This could be due to: Interferences, or cross contamination of samples, equipment or analytical instruments. Incorrect calibration standards. Misidentification of the parameter or analyte. Inappropriate choice of parameter.
	False Negatives
Definition	Management
A false negative occurs when you make the decision that a substance, parameter or effect is not present when, in fact, it is present at detectable concentrations or levels. Also known as "false acceptance errors"	For samples for analysis, "method spikes" and "field spikes" can be used. These are samples that have been made to contain detectable levels of the analyte. If the target analyte is not found in such a sample then you have a clear potential for false negatives. False negatives for field parameters are more likely to occur due to inadequate scale of sampling. This is more difficult to address, particularly for Type I monitoring.

Table 7.1 Possible Monitoring or Sampling Errors

GUIDELINE FOR DATA MANAGEMENT

Rationale

Data management is needed for all monitoring programmes but will depend on the scale, complexity and purpose of each programme. This Guideline provides a basic checklist for the development of a Data Management Plan.

Ме	Vethodology		
1	Data	management pre-planning:	
	1.1	Develop standard forms for all field data.	
	1.2	Establish a standard methodology for assigning location names, sample	
		numbers and descriptors.	
	1.3	Prepare and provide pre-printed photo or sample log forms, labels and/ or chain of custody forms.	
	1.4	Establish data storage system (hard copy/computer database/GIS).	
	1.5	Obtain and supply maps and other recording equipment as required.	
	1.6	Establish sample handling/management procedures (Guideline G.1).	
	1.7	Assign responsibilities for data management, overall and in the field.	
2	Field	data recording and handling:	
	2.1	Ensure that data is documented on standard format forms, log books,	
		film, tape or disk.	
	2.2	Assign the task of data recording task to one person per team. If more	
		than one person or one team is involved in these tasks, then training and	
		field calibration of measurements should be undertaken.	
	2.3	Ensure that all data recorded in the field is recorded in a data log (data	
type, location, time, custodian and location of storage).		type, location, time, custodian and location of storage).	
3	Initial	data validation, compilation and storage:	
	3.1	Assign responsibility and procedure for checking data for errors and	
		ensuring that corrective action is taken.	
	3.2	All data (and all formats) should be backed-up as soon as possible.	
	3.3	Ensure that all data and samples are properly stored.	
4 Assessment and compilation of data (data reduction):		ssment and compilation of data (data reduction):	
	4.1	Assign responsibility for checking requests for analysis, calculations etc.	
	4.2	Establish responsibility and procedures for assessment, verification and	
		storage of data.	
	4.3	Ensure that laboratory or third party responsibility and procedures for the	
		internal review of all analysis, calculations etc. has been established.	

Page 1 of 2	Q.1

Q.1 Methodology Continued							
5	Data	validation.					
	5.1	Ensure that data is assessed for accuracy, e.g:					
		5.1.1	Ana	lysis requested against data supplied.			
		5.1.2 Blanks, duplicates and other QA/QC samples for			S.		
		5.1.3	Dete	ection limits, holding times.			
		5.1.4	Calo	culations.			
	5.2	Ensure that, if needed, data is corrected. Note: If data is corrected by management, or other third party, then changes should be recorded and initialed.					
6	Data	Data reporting and display.					
	6.1 The format and content of final reports will vary according to the purp						
		of the m	f the monitoring programme. Generally it should include:				
6.1.1 All results (raw data).							
		6.1.2					
		6.1.3	A discussion of any data gaps, QA/QC issues.				
	6.2 Data display and dissemination methods may include:						
		6.2.1 Status Boards.					
	6.2.2 Hard copy maps						
		6.2.3 Digital maps and data (GIS/OSRA or other)					
	6.2.4 Restricted or public bulletins. These may be						
			а	Paper copy			
			b	Digital; either distributed via e-mail or displayed c internet.	on the		
				•			
	Page 2 of 2 Q.1						

8.0 FURTHER READING AND INFORMATION

- AMSA, Marine Environment Protection Services. Identification of Oil on Water: Aerial Observation and Identification Guide.
- ASTM (American Society for Testing and Materials). 1997. ASTM Standards on Environmental Sampling. Second Edition. ASTM West Conshohocken.
- Baker, J.M and W.J. Wolff (Eds). 1987. Biological Surveys of Estuaries and Coasts. Cambridge University Press.
- Cooper, K. and H.L. Rees. 2002. Aquatic Environment Protection Analytical Methods No 13: Review of Standard Operating Procedures (SOPs). Centre for Environment, Fisheries and Aquaculture Science.
- English, S, C. Wilkinson and V. Baker. 1994. Survey for Tropical Marine Resources. ASEAN-Australia Marine Science Project: Living Coastal Resources. Published by the Australian Institute of Marine Science, Townsville, Australia 4810.
- International Maritime Organization (IMO). 1998. Manual on Oil Pollution, Section VI: IMO Guidelines for Sampling and Identification of Oil Spills.
- International Maritime Organization (IMO)/Food and Agricultural Organization (FAO). 2003. Guidance on Managing Seafood Safety During & After Oil Spills. IMO Publication I590E.
- Kuklick, J. H. 1991. Guide to Field Sampling Equipment for Use in Oil Spill Studies. Prepared for NOAA Hazardous Materials Response and Assessment Division by Research Planning Institute. RPI/SR/91/4/24-1
- NOAA/ ORCA/ Hazardous Materials Response and Assessment Division. Open Water Oil Identification Job Aid.
- NOAA NOS Hazardous Materials Response and Assessment Division. Dispersant Application Observers Job Aid.
- Petroleum Industry Research Forum (PERF). Guidelines for the Scientific Study of Oil Spill Effects. PERF Project 94-10. Downloaded from <u>http://www.api.org/ehs/guidelines</u>.
- Reilly, T. I. And R K. York. 2001. Guidance on Sensory Testing and Monitoring of Seafood for Presence of Petroleum Taint Following an Oil Spill. NOAA Technical Memorandum NOS OR&R 9. National Oceanic and Atmospheric Administration, Seattle, Washington. pp 107.

- Tasmania, Government of, Dept. Primary Industries, Water and Environment. 1996. Iron Baron Oil Spill July 1995: Long Term Environmental Impact and Recovery.
- US Coast Guard/ USEPA/ American Petroleum Institute. 1997. International Petroleum Industry Environmental Conservation Association/ International Maritime Organization. 1997. Differences in Risk Perception: How Clean is Clean. Technical Report to the 1997 International Oil Spill Conference, Florida USA. pp 52.
- US Environment Protection Agency. 2001. Methods for Collection, Storage and Manipulation of Sediments for Chemical and Toxicological Analyses: Technical Manual. USE EPA Office of Water Report EPA-823-B-01-002.
- Wardrop, J. A. 2000. Shoreline Assessment: A Simplified Approach. Wardrop Consulting.
- Wardrop, J.A., B. Wagstaff, P Pfennig, J Leeder and R. Connolly. 1997. The Distribution, Persistence and Effects of Petroleum Hydrocarbons Impacted by the "Era" Oil Spill (September, 1992): Final Phase One Report (1996). Report to the Office of the Environment Protection Authority, South Australian Department of Environment and Natural Resources. pp 142.
- Yender, R., J. Michel and C. Lord. 2002. Managing Seafood Safety after an Oil Spill. Hazardous Materials Response Division, Office of Response and Restoration, National Oceanic and Atmospheric Administration, Seattle, Washington. pp 72.

APPENDIX A GLOSSARY
Assessment	The evaluation of data, obtained by surveillance, sampling or
Deelsheeeh	The area babind the abaraline. More precisely, babind the
Backbeach	Supratidal Zana
Bonthic	Septeor
Benthec	Benthic organisms
Denthos	All living things.
Biota	All living things. Plants, animals and microorganisms.
Cetaceans	vvnales, dolphins and porpoises.
Control site	An "unaffected" reference site that is used to indicate the status of
	the environment or resource without the influence of oil, chemical
	or cleanup.
Data reduction	The act of putting data into a database for analysis or production of maps, tables etc.
Emulsion	Mixture of oil and water. Emulsions may be oil in water emulsion or water in oil emulsion (mousse).
Endpoint	The measure being taken, for example "parts per million
	hydrocarbon in water" or "number of dead penguins per km of
	shoreline" etc. In other words it is a group of data. Often
	interchangeable terms include "parameter" or "data set".
Encrusting	Growing on a substance.
Epifauna/	Organisms that live on or attached to the surface of the seabed
Epiflora	e.g. seaweed, scallops, lobsters, abalone.
Fingerprinting	With respect to oil spills, the procedure for determining the range of
· ····	chemical parameters (i.e the chemical character) of an oil. Most
	oils have a characteristic balance of components and so oils from
	different samples can be compared and matched.
GPS	Global Positioning System. Satellite linked instrument for fixing
	your geographic position.
Hypothesis	A hypothesis is an idea that is to be tested. It may be similar to an
	objective but some monitoring objectives require the testing of a
	number of hypotheses, others require none. A Type I example
	would be an objective of "compare cleaning methods A and B".
	Data would include a measure of oil left on or in the beach, but
	might also included volume of sediment removed/waste generated
	or a measure of environmental damage due to each method. A
	number of hypotheses would be tested e.g. "that method A
	removes more oil than method B". A useful concept in the design
	of monitoring programmes. See also "null hypothesis".
Infauna	Organisms that live within sediments, e.g. worms, shellfish, crabs
Intertidal	The zone between the low tide mark and the high tide mark.
Invertebrate	An animal without a backbone (molluscs, crustacea, etc.)
ITZ	Intertidal Zone
LITZ	Lower Intertidal Zone.
MITZ	Mid Intertidal Zone.

Monitoring	The process of systematically obtaining information over a period
	of time. This may involve surveillance, sampling or other methods.
Nekton	Nekton includes all the free swimming organisms e.g. fish, shrimps,
	squid, whates.
Null	Read "nypotnesis" first. The Null Hypotnesis is the hypotnesis (or
nypotnesis	statement) being tested. Usually it is a hypothesis of "no effect" or
Objective	The reason for undertaking a task or monitoring programme
Objective	The reason for undertaking a task of monitoring programme.
PAH	Polycyclic Aromatic Hydrocarbon. Compound made from multiple
Devementer	The thing being measured (a g temperature depth TDL etc.)
Parameter	Planktania plant
Phytoplankton	Planktonic plant.
Pinniped	Seal, Sea Lions and Wairuses.
Plankton	Plankton includes all the poor or non-swimming or floating
	organisms whose movement is subject to water currents e.g. plants
	(phytopiankton, bacteria) animals (jellylish, copepods), as well as
Quadrat	I loually a flat frame that encloses a small area for sampling
Quadrat	Ought a har frame that encloses a small area for sampling.
	the number of species or animals is counted. This procedure is
	replicated and numbers are then taken as being representative of
	the area being sampled
Quality	A management system for ensuring that data obtained is accurate.
Assurance	effectively recorded, transferred and used, and is the type of data
	required to fulfil a programme's set objectives. Encompasses the
	planning and implementation of quality control procedures.
Quality Control	Procedures for data acquisition and management. Quality Control
-	encompasses sampling methods, sample handling (both field and
	laboratory), data transfer and storage procedures.
Replicate	A repeated sampling or sample.
Sector	A continuous section of shoreline. In shoreline response a Sector
	is a series of "Segments" with common logistics factors. Sectors
	are consequently a management unit.
Segment	A section of shoreline with a common substrate type and form. In
	shoreline response, Segments are often individual work sites.
Statistical	One measure of how reliable a data set is. Often used to describe
strength	the ability of a monitoring programme to detect change.
SIZ	Supratidal Zone (see below).
Supratidal	I he strip of shoreline above the high tide level but which can be
Zone	influenced by the sea, e.g. by wind spray or occasional high tides.
Surveillance	The process of obtaining information either by aerial observation,
0	ground surveys, remote sensing or other means.
Sampling	A procedure for obtaining materials or data for analysis.
Sample size	I his term generally refers to the number of samples rather than the
	pnysical size of each sample.

Transect	A line across a beach or other area along which sampling or data collection occurs. Generally, shoreline transects run from high tide to low tide and perpendicular to the direction of the beach.
TPH	Total Petroleum Hydrocarbons.
UITZ	Upper Intertidal Zone
Zooplankton	Planktonic animals.

APPENDIX B CONVERSION TABLES

Volume							
US Gallon	Imp. Gallon	Barrel (Oil)	Cubic Feet	Cubic Inches	Cubic Metres	Cubic cm	Litres
1.0	0.833	2.38 x 10 ⁻²	0.1337	231	3.79x10 ⁻³	9785.41	3.785
1.2	1.0	2.86 x 10 ⁻²	0.161	277.42	4.55x10⁻³	4546.1	4.55
42	35	1.0	5.615	9,792.9	0.159	158,970	158.97
7.48	6.23	0.18	1.0	1728	0.0283	28,316.8	28.32
4.33x10 ⁻³	3.6x10 ⁻³	1.03 x 10 ⁻⁴	5.78x10 ⁻⁴	1.0	1.64x10⁻⁵	16.39	0.16
264.2	220	6.29	35.31	61,023.74	1.0	1x10 ⁶	1000
2.64x 10 ⁻⁴	2.2x10 ⁻⁴	6.29 x 10 ⁻⁶	3.53x10⁻⁵	0.061	1x10 ⁻⁶	1.0	0.001
0.26	0.22	6.29 x 10 ⁻³	3.53x10 ⁻²	61 02	0.001	1,000	1.0

Length								
Inch	Feet	Yards	Mile	N Mile	Fathom	cm	Metres	Km
1.0	0.08	0.03	1.57x10 ⁻⁵	1.37x10⁻⁵	0.14	2.54	0.0254	2.54x10 ⁻⁵
12	1.0	0.33	1.89x10 ⁻⁴	1.65x10 ⁻⁴	0.167	30.48	0.3048	3.05x10 ⁻⁴
36	3	1.0	5.68x10 ⁻⁴	4.94x10 ⁻⁴	0.5	91.144	0.9144	9.14x10 ⁻⁴
63,360	5280	1760	1.0	0.87	880	160,934	1,609	1.609
72,914	6076	2025	1.15	1.0	1012.7		1,852	1.852
72	6	2	1.14x10 ⁻³	9.87x10 ⁻⁴	1.0	182,29	1.822	1.83x10 ⁻³
0.394	0.03	0.01	6.21x10 ⁻⁶	5.4x10⁻ ⁶	0.00547	1.0	0.01	0.00001
39.37	3.28	1.09	6.21x10 ⁻⁴	5.4x10 ⁻⁴	0.547	100	1.0	0.001
39,398	3,281	10,93.6	0.62	0.54	547	100,000	1,000	1.0
1 micron = 1 millionth of a meter = 1000 nanometers								

Weight (Mass)							
Ounce (oz)	Pound (lb)	Short Ton (US)	Long Ton (UK)	Gram (gm)	Kilogram (kg)	Tonne (t)	
1.0	0.0625	3.125x10⁻⁵	2.79x10⁻⁵	28.35	92.84x10 ⁻²	2.84x10⁻⁵	
16	1.0	0.0005	4.46x10 ⁻⁴	453.6	0.4536	4.54x10 ⁻⁴	
32,000	2000	1.0	0.893	907,184.7	907.19	0.907	
35,840	2240	1.12	1.0	1,016,047	1,016.04	1.016	
0.03527	2.21x10 ⁻³	1.1x10 ⁻⁶	9.84x10 ⁻⁷	1.0	0.001	1.0x10 ⁻⁶	
35.274	2.2	1.1x10 ⁻³	9.84x10 ⁻⁴	1,000	1.0	91.0x10 ⁻³	
35,273.96	2,204.62	1.102	0.984	1x10 ⁶	1000	1.0	

Area						
Sq Feet	Sq Yards	Acres	Sq Miles	Sq Metres	Hectares	Square Km
1.0	0.11	2.3x10⁻⁵	3.59x10 ⁻⁸	0.09	9.29x10⁻ ⁶	9.29x10 ⁻⁸
9	1.0	2.07x10 ⁻⁴	3.23x10 ⁻⁷	0.84	8.36x10⁻⁵	8.36x10 ⁻⁷
43,560	4839.96	1.0	1.56x10 ⁻⁵	4,046.83	0.4047	4.05x10 ⁻³
2.79x10 ⁷	3,097,600	640	1.0	2,589,988	259.0	2.59
10.764	1.2	2.47x10 ⁻⁴	3.86x10 ⁻⁷	1.0	0.001	1.0x10 ⁻⁶
10,639.1	11,959.9	2.471	0.00386	1,000	1.0	0.01
1.07×10^{7}	1,195,990	247.1	0.386	1,000,000	100	1.0

Velocity					
Knots	Miles/Hour	N Mile/ Hour	Feet / Second	Km per Hour	Metres / Sec
1.0	1.15	1	1.69	1.85	0.51
0.87	1.0	0.87	1.47	1.61	0.45
1.0	1.15	1.0	1.69	1.85	0.51`
0.59	0.68	0.59	1.0	1.10	0.30
0.54	0.68	0.54	0.91	1.0	0.28
1.94	2.24	1.94	3.28	3.6	1.0

Pressure							
Pascal	Newton/ Cubic m	Pound/ Sq Inch	Kg/ Sq Metre	Bar			
1.0	1.0	1.45x10 ⁻⁴	1.02x10 ⁻¹	1.0x10 ⁻⁵			
6,895	6,895	1.0	703.07	0.068			
9.81	9.81	1.42x10 ⁻⁴	1.0	9.81x10⁻⁵			
100,000	100,000	14.7	10,197.16	1.0			
1 pound per cubic foot = 0.0259 grams per cubic centimeter							

Conversion Formulae							
Temperature	Degrees C =	Degrees F =					
	(Degrees Fahrenheit - 32) x 5/9	(Degrees Celsius x 9/5) + 32					
Power	1 horse power = 745 Watts = 0.75 kilowatts						
Viscosity	Kinematic Viscosity ⁽¹⁾ = Dynamic Viscosity ⁽²⁾ X SG of liquid						
(1) centiStokes (2)	mPas, centiPoise						